IJSER Home >> Journal >> IJSER
International Journal of Scientific and Engineering Research
ISSN Online 2229-5518
ISSN Print: 2229-5518 8    
Website: http://www.ijser.org
scirp IJSER >> Volume 3,Issue 8,August 2012
Rotational Diffusion of Coumarin Dye Molecules in polar and non-polar solvents
Full Text(PDF, )  PP.1507-1513  
Renuka. C.G, Nadaf. Y. F and U. S. Raikar 
Coumarinlaserdyes, anisotropy, lifetime, rotational reorientation times.
Rotational dynamics of two structurally similar coumarins; coumarin 7 and coumarin 30 has been studied using a steady state fluorescence depolarization technique and time correlated single photon counting method as a function of temperature in ethanol and n-decane solvents. Experimentally measured reorientation times of these coumarins are identical in a given solvents at a particular temperature. The present study has been undertaken to examine the role of friction experienced by the polar solutes in a polar solvents. Molecular shape and size are similar but the friction experienced by these probes in ethanol and n-decanol solvents were varies. However, it was observed that coumarin 30, coumarin 7 rotates faster in alcohol than alkane and the observed results are discussed in the last section.
[1] Cyril Párkányi, Maged Shafik Antonious, Jean-Jacques Aaron, Michaela Buna, Alphonse Tine&Lamine Cissá., (1994).Determination of the First Excited Singlet State Dipole Moments of Coumarins by the Solvatochromic Method.Spect. Lett. 27(4), 439-449.

[2] Hovias. R, Vallotton. P, Wohland. T and Vogel. H., (2000). Fluorescence techniques: Shedding light on ligand receptor interactions Trends Pharmacol. Sci. (21), 266–273.

[3] ParkJ. H, Nho Y. C. and KangM. G., (2009). Dye-sensitized solar cells containing polymer film with honey-comb link morphology., J. Photochem. Photobiol. A., 203, 151-154.

[4] JonesG, Jackson W. R. and. HalpernA. M,(1980), Medium Effects on Fluorescence Quantum Yields and Lifetimes for Coumarin Laser Dyes,Chem. Phys. Lett., 72, 391–395.

[5] JonesG, JacksonW. R, Choi C.Y and BergmarkW. R., (1985), Solvent effects on emission yield and lifetime for Coumarin laser dyes: requirements for a rotatory decay mechanism, J. Phys. Chem., 89, 294–300.

[6] JonesG. JacksonW. R, Kanoktanaporn S, and A. M. Halpern, (1980), Solvent Effects on Photophysical Parameters for Coumarin Laser Dyes, Opt. Commun., 33, 315–320.

[7] Chu Gand YangboF.,(1987), Solvent and substituent effects on intramolecular charge transfer of selected derivatives of 4- trifluoromethyl-7-aminocoumarin, J. Chem. Soc., Faraday Trans. 1, 83, 2533–2539.

[8] Karl Rechthaler and KohlerG., (1994).Excited state properties and deactivation pathways of 7- aminocoumarins., Chem.Phy., 89 (1), 99– 116.

[9] Satpati, A.K, Senthilkumar, S,Kumbhakar. M,Nath, S., Maity, D.K, Pal, H., (2005) Investigations ofthe solvent polarity effect on the photophysical properties of coumarin-7 dye. Photochem. Photobiol. 81, 270-278.

[10] Nad Sand PalH., (2001). Unusual photophysical properties of Coumarin-151," J. Phys. Chem. A 105, 1097-1106.

[11] PalH, NadS., and KumbhakarM., (2003). Photophysical properties of Coumarin-120, unusual behavior in nonpolar solvents., J. Chem. Phys. 119, 443-452.

[12] Nad.S and Pal. H., (2003). Photophysical properties of Coumarin-500 (CM500): Unusual behavior innonpolar solvents., J. Phys. Chem. A., 107(4), 501-507.

[13] Nad. S,Kumbhakar, M, Pal. H.,(2003).Photophysical Properties of Coumarin-152 and Coumarin-481 Dyes: Unusual Behavior in Nonpolar and in Higher Polarity Solvents. J. Phys. Chem. A, 107, 4808-4816.

[14] Kim T.G, Topp M.R.,(2004). Solvent effects on the fluorescence depolarization rates of coumarins in solution: the likely influence of side-selective hydrogen bonding. J. Phys. Chem. A., 108, 7653–7659.

[15] Arbeloa T.L, Arbeloa F. L, Tapia M. J, Arbeloa I.L., (1993). Hydrogen-bonding effect on the photophysical properties of 7- aminocoumarin derivatives. J. Phys. Chem., 97, 4704–4707.

[16] GustavssonT., CassaraL., GulbinasV.,.GurzadyanC.MialocqG, J,PommeretS, SorgiusM., Van der MeulenP., (1998). Femtosecond spectroscopic study of relaxation processes of three 7-aminocoumarins in MeOH and DMSO., J. Phys .Chem. A., 102, 4229-4245.

[17] DasK., Jain B.and PatelH. S., (2006). Hydrogen Bonding Properties of Coumarin 151, 500, and 35: The Effect of Substitution at the 7-Amino Position., J. Phys. Chem. A 110, 1698-1704.

[18] ChudobaC., Nibbering E. T. J. and ElsaesserT., (1999). Ultrafast structural response of hydrogen bonded complexes after electronic excitation in the condensed phase., J. Phys. Chem. A., 103, 5625–5628.

[19] Tschirschwitz F. and. NibberingE. T. J, (1999).Femtosecond pump-probe and grating scattering study of condensed phase hydrogen-bondingdynamics of complexes of coumarin 102., Chem.Phy.Lett.,312, 169- 177.

[20] NibberingE. T. J., TschirschwitzF., Chudoba C.and ElsaesserT.., Femtochemistry ofhydrogen-bonded complexes after electronic excitation in the liquid phase: the case of coumarin102.,(2000).Jl. of Phy. Chem. A 104 (18), 4236-4246.

[21] PalitD. K., ZhangT. Q., Kumazaki S.and YoshiharaK.., (2003). Hydrogen-Bond Dynamics in the Excited State of Coumarin 102 – Amine Hydrogen-bonded Complex. J. Phys. Chem. A, 107, 10798-10804.

[22] ZhaoG. J.,. HanK.-L, (2007). Early time hydrogen-bonding dynamics of photoexcitedcoumarin 102 inhydrogendonating solvents: theoretical study., J. Phys. Chem. A., 111, 2469–2474.

[23] WellsN. P., McGrathM. J., SiepmannJ. I., Underwood D. F. and BlankD. A., (2008). Excited state hydrogen bond dynamics: Coumarin 102 in acetonitrile:water binary mixtures., J. Phys. Chem. A, 112, 2511– 2514.

[24] Ito N, Kajimoto O, Hara K.,(2002). Highpressure studies of rotational dynamics for coumarin 153 in alcohols and alkanesJ.PhysChem A,106(25), 6024–6029.

[25] GustavssonT., CassaraL., MarguetS., GurzadyanG.,. van der MeulenP, Pommeret S. and MialocqJ. C., (2003). Rotational diffusion of the 7-diethylamino-4- methylcoumarin C1 dye molecule in polar protic and aprotic solvents. Photochem. Photobiol. Sci., 2, 329–341.

[26] Dorfmuller. T, Pecora. R.(1987). Rotational dynamics of small and macromolecules, 4th Ed., Vol.293. Springer-Verlag, Berlin.

[27] Fleming. G. R., (1986). Chemical Applications of Ultrafast Spectroscopy, Oxford, NewYork, Sec. 6.2. [28] Simon. J. D, Kluwer Dordrecht., (1994). Ultrafast Dynamics of Chemical Systems. Holand.

[29] Lakowich. J. R.,(1983). Principles of Fluorescence Spectroscopy, Plenum, NewYork.

[30] O’Conner. D.V and Phillip. D., (1984). Time-Correlated Single Photon Counting, Academic London.

[31] Pal. H, Palit. D. K, Mukherjee. T and Mittal. J. P.,(1990). Some aspects of steady state and time-resolved fluorescence of tyrosine and related compounds., J. Photochem. Photobiol. A. 52(3), 391-401.

[32] EdwardJ. T., (1970).Molecular volumes and the Stokes-Einstein equation. J. Chem. Educ., 47, 261-270.

[33] Dutt.G. B., Krishna G. R and RamanS., (2001). Rotational dynamics of coumarins in nonassociative solvents: Point dipole versus extended charge distribution models of dielectric friction., J. Chem. Phy., 115, 4732-4741.

[34] MoogR. S., Bankert D. L. and MaroncelliM.,(1993). Rotational Diffusion of Coumarin 102 in Trifluoroethanol: The Case for Solvent Attachment, J. Phys. Chem., 97, 1496-1501.

Untitled Page