IJSER Home >> Journal >> IJSER
International Journal of Scientific and Engineering Research
ISSN Online 2229-5518
ISSN Print: 2229-5518 11    
Website: http://www.ijser.org
scirp IJSER >> Volume 3,Issue 11,November 2012
Optimization of LPG Diffusion Flame Synthesis of Carbon - Nanotubed Structures using Statistical Design of Experiments (SDOE)
Full Text(PDF, )  PP.263-269  
Author(s)
Akash Deep, Nishtha Arya
KEYWORDS
Flame synthesis, carbon nanotubes, pyrolysis, DOE, LPG, Single walled carbon nanotubes, diffusion flame
ABSTRACT
A statistical designed experimental approach was followed to investigate the various diffusion flame conditions for the synthesis of carbon nanotubed structures utilizing domestic Liquefied Petroleum Gas (IS - 4576) as the fuel carbon source. LPG flow rat
References
[1] Smith, D. M. and A. R. Chughtai. “The surface structure and reactivity of black carbon.” Colloids and Surfaces A: Physicochemical and Engineering Aspects 105 (1995): 47-77.

[2] Haynes, B. S. and H. GG. Wagner. “Soot Formation.” Prog. Energy Combust. Set. Vol. 7 (1981): 229 273.

[3] Hessler J. P., S. Seifert, R. E. Winans. “Spatially-resolved small-angle x-ray scattering studies of soot inception and growth.” 29th International Symposium on Combustion, July 17 (2002).

[4] Siegmann, K. “Session 4E – Aerosol Formation at High Temperatures (Special Session).” J. Aerosol Sci. Vol. 31, Suppl. 1 (2000): S217 - S218.

[5] Shaijumon, M. M. and S. Ramaprabhu. “Studies of yield and nature of carbon nanostructures synthesized by pyrolysis of ferrocene and hydrogen adsorption studies of carbon nanotubes.” International Journal of Hydrogen Energy 30 (2005):311-317.

[6] Gulder, Omer L. “Influence of Hydrocarbon Fuel Structural Constitution and Flame Temperature on Soot Formation in Laminar Diffusion Flames.” Combustion and Flame 78 (1989): 179-194.

[7] Saito, K., Gordon, A. S., Williams, F. A., & Stickle, W. F. (1991). A study of the early history of soot formation in various hydrocarbon diffusion flames. Combustion Science and Technology, Vol. 80, No. 1-3, pp. 103-119, ISSN 0010-2202

[8] Saito, K., Williams, F. A., & Gordon, A. S. (1986). Strucutre of laminar co-flow methane air diffusion flames. Journal of Heat TransferTransactions of the ASME, Vol. 108, No. 3, pp. 640-648, ISSN 0022- 1481

[9] Yuan, Liming, Tianxiang Li and Kozo Saito. “Growth mechanism of carbon nanotubes in methane diffusion flames.” Carbon 41 (2003): 1889-1896.

[10] Yuan, Liming, Koso Saito, Chunxu Pan, F. A. Williams and A. S. Gordon. “Nanotubes from methane flames.” Chemical Physics Letters 340 (2001): 237-241.

[11] Yuan L, Saito K, Pan C, Williams FA, Gordon AS. Nanotubes from methane flames. Chem Phys Lett 2001; 340:237-41.

[12] Yuan, L. M., Saito, K., Hu, W. C., & Chen, Z. (2001). Ethylene flame synthesis of well-aligned multi-walled carbon nanotubes. Chemical Physics Letters, Vol. 346, No. 1-2, pp. 23-28, ISSN 0009-2614

[13] Vander Wal., Randall L. “Flame synthesis of substrate-supported metal-catalyzed carbon nanotubes.” Chemical Physics Letters 324 (2000): 217-223.

[14] Vander Wal., Randall L. “Flame synthesis of Ni-catalyzed nanofibers.” Carbon 40 (2002): 2101-2107.

[15] Vander Wal., Randall L. “Fe-Catalyzed Single-Walled Carbon Nanotube Synthesis within a Flame Environment.” Combustion and Flame 130 (2002): 37-47.

[16] Vander Wal., Randall L. and Aaron J. Tomasek. “Soot nanostructure: dependence upon synthesis conditions.” Combustion and Flame 136 (2004): 29-40.

[17] Vander Wal R.L, Ticich T.M, Curtis V.E. Diffusion flame synthesis of single-walled carbon nanotubes. Chem. Phys Lett; 323 (3-4): 217-23, 2000.

[18] Hou, S.-S., Chung, D.-H., & Lin, T.-H. (2009). High-yield synthesis of carbon nano-onions in counterflow diffusion flames. Carbon, Vol. 47, No. 4, pp. 938-947, ISSN 00086223

[19] Li, T. X., Zhang, H. G., Wang, F. J., Chen, Z., & Saito, K. (2007). Synthesis of carbon nanotubes on Ni-alloy and Si-substrates using counterflow methane–air diffusion flames. Proceedings of the Combustion Institute, Vol. 31, No. 2, pp. 1849-1856, ISSN 15407489

[20] Merchan-Merchan, W., Saveliev, A., & Kennedy, L. A. (2003). Carbon nanostructures in opposed-flow methane oxy-flames. Combustion Science and Technology, Vol. 175, No. pp. 2217-2236, ISSN

[21] Merchan-Merchan, W., Saveliev, A., & Kennedy, L. A. (2004). Highrate flame synthesis of vertically aligned carbon nanotubes using electric field control. Carbon, Vol. 42, No. 3, pp. 599-608, ISSN 00086223

[22] Merchan-Merchan, W., Saveliev, A., Kennedy, L. A., & Fridman, A. (2002). Formation of carbon nanotubes in counter-flow, oxy-methane diffusion flames without catalysts. Chemical Physics Letters, Vol. 354, No. 1-2, pp. 20-24, ISSN 0009-2614

[23] Merchan-Merchan, W., Saveliev, A. V., & Nguyen, V. (2009). Opposed flow oxy-flame synthesis of carbon and oxide nanostructures on molybdenum probes. Proceedings of the Combustion Institute, Vol. 32, No. 2, pp. 1879-1886, ISSN 15407489

[24] Saveliev, A. (2003). Metal catalyzed synthesis of carbon nanostructures in an opposed flow methane oxygen flame. Combustion and Flame, Vol. 135, No. 1-2, pp. 27-33, ISSN 00102180

[25] Xu, F. S., Zhao, H., & Tse, S. D. (2007). Carbon nanotube synthesis on catalytic metal alloys in methane/air counterflow diffusion flames. Proceedings of the Combustion Institute, Vol. 31, No. pp. 1839-1847, ISSN 1540-7489

[26] Jyoti bharj, sarabjit singh, subhash chander, Rabinder singh, Flame synthesis of carbon nanotubes using domestic LPG. AIP conf. Poc. 1324; doi: 10.1063/1.3526241.

[27] Goh TN. A pragmatic approach to experimental design in industry. J Appl Statist 2001;28(3–4):391–8.

Untitled Page