IJSER Home >> Journal >> IJSER
International Journal of Scientific and Engineering Research
ISSN Online 2229-5518
ISSN Print: 2229-5518 11    
Website: http://www.ijser.org
scirp IJSER >> Volume 3,Issue 11,November 2012
Comparative Study Of Various Techniques For Elimination Of Noise In Emg Signal
Full Text(PDF, )  PP.98-107  
Jitendar Yadav, Arjun Singh, Mohit Kumar
Electromyography, EMG signal, Baseline fluctuation, bioelectric potential, segmentation
Electromyography (EMG) is the study of electrical activity of muscle and it form valuable information in the diagnosis of neuromuscular disorders. EMG signal may be degraded by a noise; it is in the baseline of EMG signal. It is called baseline fluctuatio
[1] A.O. Andrade, S. Nasuto, P. Kyberd and C. SweeneyReed, “Generative topographic mapping applied to visualization of motor unit action potential”, Biosystems (2005.)

[2] Bezier, P., “Definition Numerique des Courbes et Surfaces II”. Automatisme, 12:17-21, (1967).

[3] De Luca, C.J., “Physiology and mathematics of myoelectric signals”, IEEE Trans. BME 34, 98-105 (1987).

[4] C. Campos, A. Malanda, L. Gila, V. Segura, I. Lasanta, J. Artieda, Quantification of jiggle in real electromyography signals, Muscle Nerve, (2000), pp 1022–1034.

[5] C.R. Meyer, H.N. Keiser, Electrocardiogram baseline noise estimation and removal using cubic spline and State-space computation techniques, in computers and biomedical research, Academic Press New York, (1997), pp 459-470.

[6] C.I. Christodoulos. C.S. Pattichis. “A New Technique for the Classification and Decomposition of EMG Signals”. Proceeding in IEEE international conference Neural Network 1995, pp-2303-2308.

[7] C.S. Pattichis, M.S Pattichis, “Analysis of motor unit action potential”. IEEE Trans Biomed Eng. 1994, pp 1320- 1329.

[8] Craven, P. and Grace Wahba, “Smoothing Noisy Data with Spline Functions”: Estimating the Correct Degree of Smoothing by the Method of Generalized Cross-Validation", (1979), pp 377-403.

[9] C.S. Burrus, J.H. McClellan, A.V. Oppenheim, T.W. Parks, R.W. Schafer & H.W. Schussler. ComputerBased Exercises for Signal Processing Using MATLAB. Prentice-Hall, (1994).

[10] D.C. Preston, B.E. Shapiro, Electromyography and Neuromuscular Disorders, Butterworth-Heinemann, Boston, (1998).

[11] E. Stalberg, S. Andreassen, B. Falk, H. Lang, A. Rosenfalk, W. Trojaborg, “Quantitative analysis of individual motor units potentials: a proposition for standardized terminology and criteria for measurement”, J. Clin. Neurophysiol. (1986), pp 313– 348.

[12] E. Stalberg, M. Sonno, “Assessment of variability in the shape of MUAP”, the “jiggle”, at consecutive discharges, Muscle Nerve (1994), pp-1135-1144.

[13] Emmanuel C. Ifeachor & Barrie W. Jervis “Digital signal processing a Practical Approach” second edition (Publisher: Pearson Education Asia).

Untitled Page