On a Subclass of Analytic Functions with negative Coefficient Pertaining to p?q Function*

Full Text(PDF, ) PP.327343


Author(s) 
V.B.L. Chaurasia, R.C. Meghwal 

KEYWORDS 
pqfunction, Hadamard product, coefficient estimates,
Distortion theorem, closure properties. 

ABSTRACT 
The aim of this paper is to analysis the subclass SC(?,?,?) pertaining to the Hadamard product of p?qfunction ([12]) with negative coefficients in unit disc ? = {z :  z  < 1}. Further, coefficient estimates, distortion theorem and radius of convexity f 

References 

[1] E.D. Rainville (1971). Special Functions. Chelsea Publ. Co. Bronx, New
York.
[2] M.K. Aouf and N.E. Cho, On a certain subclass of analytic functions with
negative coefficients, Turkish. J. Math., 22(1), 1988, 3342.
[3] M.K. Aouf, H.M. Hossen and A.Y. Lashin, On certain families of analytic
function with negative coefficients, Indian J. pure. Appl. Math., 31, 2000,
9991015.
[4] M.K. Aouf, H.M. Hossen and A.Y. Lashin, A class of univalent functions
defined by using Hadamard product, Math. Vesnik, 55, 2003, 8396.
[5] S.Owa, On the distortion theorem I, Kyungpook Math. J., 18, 1978, 5359.
[6] S.Owa and M.K. Aouf, On subclass of univalent function with negative
coefficients II, Pure Appl. Math. Sci.,29, 1989, 131139.
[7] S. Ruscheweyh, New criteria of univalent functions, Proc. Amer. Math. Soc.,
49, 1975, 109115.
[8] G.S. Salagean Subclasses of Univalent functions, Lecture Notes in Math.
(Springer Verlag), 1013, 1983, 362372.
[9] H.M. Srivastava and S. Owa,An application of fractional derivatives, Math.
Japan, 29, 1984, 384389.
[10] H.M. Srivastava and S. Owa (Editors), Current topics in Analytic Function
Theory, World Scientific Publishing Co., Singapore, New Jersey, London
and Hongkong, 1992.
[11] H.M. Srivastava, M. Saigo and S. Owa, A class of distortion theorem
involving certain operators of fractional calculus, J. Math. Anal. Appl., 131,
1998, 412420.
[12] H.M. Srivastava and H.L. Manocha., A Treatise on Generating Functions,
Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons,
New York, Chichester, Brisbane and Toronto, 1984.


