IJSER Home >> Journal >> IJSER
International Journal of Scientific and Engineering Research
ISSN Online 2229-5518
ISSN Print: 2229-5518 10    
Website: http://www.ijser.org
scirp IJSER >> Volume 3,Issue 10,October 2012
On a Subclass of Analytic Functions with negative Coefficient Pertaining to p?q- Function*
Full Text(PDF, )  PP.327-343  
Author(s)
V.B.L. Chaurasia, R.C. Meghwal
KEYWORDS
pq-function, Hadamard product, coefficient estimates, Distortion theorem, closure properties.
ABSTRACT
The aim of this paper is to analysis the subclass SC(?,?,?) pertaining to the Hadamard product of p?q-function ([12]) with negative coefficients in unit disc ? = {z : | z | < 1}. Further, coefficient estimates, distortion theorem and radius of convexity f
References
[1] E.D. Rainville (1971). Special Functions. Chelsea Publ. Co. Bronx, New York.

[2] M.K. Aouf and N.E. Cho, On a certain subclass of analytic functions with negative coefficients, Turkish. J. Math., 22(1), 1988, 33-42.

[3] M.K. Aouf, H.M. Hossen and A.Y. Lashin, On certain families of analytic function with negative coefficients, Indian J. pure. Appl. Math., 31, 2000, 999-1015.

[4] M.K. Aouf, H.M. Hossen and A.Y. Lashin, A class of univalent functions defined by using Hadamard product, Math. Vesnik, 55, 2003, 83-96.

[5] S.Owa, On the distortion theorem I, Kyungpook Math. J., 18, 1978, 53-59.

[6] S.Owa and M.K. Aouf, On subclass of univalent function with negative coefficients II, Pure Appl. Math. Sci.,29, 1989, 131-139.

[7] S. Ruscheweyh, New criteria of univalent functions, Proc. Amer. Math. Soc., 49, 1975, 109-115.

[8] G.S. Salagean Subclasses of Univalent functions, Lecture Notes in Math. (Springer Verlag), 1013, 1983, 362-372.

[9] H.M. Srivastava and S. Owa,An application of fractional derivatives, Math. Japan, 29, 1984, 384-389.

[10] H.M. Srivastava and S. Owa (Editors), Current topics in Analytic Function Theory, World Scientific Publishing Co., Singapore, New Jersey, London and Hongkong, 1992.

[11] H.M. Srivastava, M. Saigo and S. Owa, A class of distortion theorem involving certain operators of fractional calculus, J. Math. Anal. Appl., 131, 1998, 412-420.

[12] H.M. Srivastava and H.L. Manocha., A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984.

Untitled Page