IJSER Home >> Journal >> IJSER
International Journal of Scientific and Engineering Research
ISSN Online 2229-5518
ISSN Print: 2229-5518 10    
Website: http://www.ijser.org
scirp IJSER >> Volume 3,Issue 10,October 2012
Improved Satellite Image Preprocessing and Segmentation using Wavelets and Enhanced Watershed Algorithms
Full Text(PDF, )  PP.248-255  
Author(s)
K.M. Sharavana Raju, Dr. V. Karthikeyani
KEYWORDS
Satellite Image processing, Image Segmentation, Watershed algorithm, Clustering.
ABSTRACT
Satellite imagery consists of photographs of earth or other planets made by means of artificial satellites. Satellite images have many applications in meteorology, agriculture, geology, forestry, biodiversity conservation, regional planning, education, in
References
[1] Singh, P.K. (2004) Unsupervised segmentation of medical images using DCT coefficients, Proceedings of the Pan-Sydney area workshop on Visual information processing, ACM International Conference Proceeding Series; Vol. 100, Pp. 75-84.

[2] Thangam, S.V., SaiDeepak K., Rai, H.G.N. and Mirajkar, P.P. (2009) An Effective Edge Detection Methodology for Medical Images Based on Texture Discrimination, Seventh International Conference on Advances in Pattern Recognition, Pp.227-231.

[3] Al-amri1, S.S., Kalyankar, N.V. and Khamitkar, S.D. (2010) A Comparative Study of Removal Noise from Remote Sensing Image, IJCSI International Journal of Computer Science Issues, Vol. 7, Issue. 1, No. 1, Pp. 32-36.

[4] Chen, K., Wang, D. and Liu,X. (2000) Weight Adaptation and Oscillatory Correlation for Image Segmentation, IEEE Trans. on Neural Networks, Vol.11, No.5, Pp. 1106–1123.

[5] Haralick, R.M. and Shapiro, L.G. (2005) Image segmentation techniques, Comput. Vis. Graph. Im. Proc., 29, 100–132.

[6] Lee S. and Crawford, M.M. (2005) Unsupervised Multistage Image Classification Using Hierarchical Clustering with a Bayesian Similarity Measure, IEEE Trans. on Image Processing Vol. 14, No.3, Pp. 312-320.

[7] Manousakas, I.N., Undrill, P.E.,Cameron, G.G. and Redpath T. (1998) Split-and-merge segmentation of magnetic resonance medical images: performance evaluation and extension to three dimensions. Comput. Biomed. Res., Vol. 31, Pp. 393–412.

[8] Mangin, J.F., Frouin, V., Bloch, I. ,Regis, J. and Lopez-Krahe J. (1995) From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. J.Math.Imag. Vis., Vol. 5, Pp. 297–318.

[9] Kapur, T., Grimson, E., Wells, W. and Kikinis, R. (1996) Segmentation of brain tissue from magnetic resonance images. Med. Im. Anal., Vol. 1, Pp.109–127.

[10] Hebert, T.J. (1997) Fast iterative segmentation of high resolution medical images, IEEE T. Nucl. Sci., Vol. 44, Pp.1363–1367.

[11] Zhang, Y., Brady, M. and Smith, S. (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm, IEEE Transactions on Medical Imaging, Vol. 20, No.1, Pp.45-57.

[12] Bezdek, J.C. (1992) A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance image of the brain, IEEE T. Neural Networks, Vol. 3, Pp. 672–682.

[13] Sijbers, J., Scheunders, P., Verhoye, M., Van Der Linden, A., Van Dyck, D. and Raman, E. (1997) Watershed-based segmenttation of 3D MR data for volume quantization, Mag. Res. Imag., Vol. 15, Pp.679–688.

[14] Pisano, E.D., Zong, S., Hemminger, B.M., DeLuca, M., Johnston, R.E., Muller, K., Braeuning, P.M. and Pizer, S.M. (1998) Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms, Journal of Digital Imaging, Vol. 11, No. 4, Pp. 193-200.

[15] Sapiro, G. (2001) Geometric partial differential equations and image analysis, Cambridge University Press. P. 223.

[16] Yu, Y. and Acton, S.T. (2002) Speckle Reducing Anisotropic Diffusion, IEEE Transactions on Image Processing, Vol. 11, Pp.1260- 1270.

[17] Gonzalez, M.A. and Ballarin, V.L. (2009) Automatic marker determination algorithm for watershed segmentation using clustering, Lat. Am. Appl. Res., Vol.39, No.3, Pp.225-229.

[18] Fukunaga, K. and Hostetler L. (1975) The estimation of the gradient of a density function, with applications in pattern recognition, IEEE Transactions on Information Theory, Vol. 21, Pp.32–40.

[19] Venkatesan, M., MeenakshiDevi, P., Duraiswamy, K. and Thyagarajah, K. (2008) Secure Authentication Watermarking for Binary Images using Pattern Matching, IJCSNS International Journal of Computer Science and Network Security, Vol.8, No.2, Pp. 241-250.

Untitled Page