IJSER Home >> Journal >> IJSER
International Journal of Scientific and Engineering Research
ISSN Online 2229-5518
ISSN Print: 2229-5518 7    
Website: http://www.ijser.org
scirp IJSER >> Volume 3,Issue 7,July 2012
Effects of Salinity on Growth and Total Lipid Con-tent of the Biofuel Potential Microalga Ankistro-desmus falcatus (Corda) Ralfs
Full Text(PDF, )  PP.128-134  
Jayanta Talukdar, Mohan Chandra Kalita and Bhabesh Chandra Goswami 
Ankistrodesmus falcatus, Biofuel, Biomass, Calorific value, Lipid, Microalgae, Oleaginous, Renewable, Salinity
Growth responses and total lipid content of a native strain of the biofuel potential freshwater oleaginous microalgae A.falcatus was studied owing to its inherently high lipid content for potential utilization as renewable biomass feedstock of biofuels. Influences of salinity in increasing order from 40 mM to 320 mM of NaCl in BG11 medium on growth (µ), total lipid (TL) content and calorific value (CV) were studied in triplicate batch mode culture at light intensity 35 µmol/m2/s, temperature 25 ± 2 0C and 16:8 hrs light and dark diurnal cycles. Enhanced growth and total lipid contents were observed with increasing salinity up to 160 mM NaCl. The highest specific growth (µ=0.313 d-1) and least doubling time (T2=2.21 days) with maximum increase in cell numbers (2.9 x I05 ml-1) were recorded in medium supplemented with 160 mM of NaCl compared to control medium (µ=0.209 d-1, T2=3.32 days and 1.52 x I05 ml-1 respectively). Improved total lipid (55.3%), carbohydrate (14.5%), and protein (4.8%) contents were also determined compared to control medium (lipid 38.3%, carbohydrate 12.6%, and protein 3.1%, respectively). With maximum energy value of 27.9 ± 0.15 kJg-1, a close correlation (R2 = 0.955) between lipid content and calorific value was observed. With the support from present research findings, the native strain of freshwater oleaginous microalga A. falcatus could be a potent candidate for production of renewable biomass feedstock of biofuels. The present research findings will be supportive towards further culture optimization for increased biomass yield with concomitant lipid content and improved of fatty acid profile in mass cultivation
[1] Borowitzka, M.A., and Moheimani, N.R.: Sustainable biofuels from algae. Mitig. Adapt. Strateg. Glob. Change, (2011). doi:10.1007/S11027-010-9271-9

[2] Hill, J., Nelson, E., Tilman, D., Polasky, S., and Tiffany, D.: Environmental, economic, and energetic costs and benefits of biodiesel and bioethanol fuels. PNAS, 30, 11206-11210 (2006). doi:10.1073 pnas.0604600103

[3] Brennan, L., and Owende, P.: Biofuels from microalgae –A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sust. Energ. Rev., 14, 557-577 (2010). doi:10.1016/j.rser.2009.10.009

[4] Piccolo, T.: Aquatic biofuels. GlobeFish-FIIU, (2008). http://www.globefish.org/files/Aquaticbiofuels_638.pdf

[5] Walkar, D.A.: Biofuels – for better or worse? Ann. Appl. Biol., 156, 319–327 (2010). doi:10.1111/j.1744-7348.2010.00404.x

[6] Schenk, P., Thomas-Hall, S., Stephens, E., Marx, U., Mussgnug, J., Posten, C., Kruse, O., and Hankamer, B.: Second generation biofuels: high efficiency microalgae for biodiesel production. BioEnergy Research, 1, 20-43 (2008). doi:10.1007/s12155-008-9008-8

[7] Searchinger, T., Heimlich, R., Houghton, R.A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., and Yu, T.H.: Use of US croplands for biofuels increases greenhouse gases through emissions from land use change. Science Express, 1-6 (2008). doi:10.1126/science.1151861

[8] Singh, A., Nigam, P.S., and Murphy, J.D.: Mechanism and challenges in commercialisation of algal biofuels. Bioresour Technol., 102, 26–34 (2011). doi:10.1016/j.biortech.2010.06.057

[9] Campbell, C.J.: The coming oil crisis. Multi-science Publishing Company and etroconsultants, S.A Essex, (1997). http://www.multiscience.co.uk/oilcrisis.htm

[10] Chisti, Y.: Biodiesel from microalgae. Biotechnol. Adv., 25, 294-306 (2007). doi:10.1016/j.biotechadv.2007.02.001

[11] Li, Q., Du, W., and Liu, D.: Perspectives of microbial oils for biodiesel production. Appl. Microbiol. Biotechnol., 80, 749-756 (2008). doi:10.1007/s00253-008- 1625-9

[12] Rodolfi, L., Zittelli, G.C., Bassi, N., Padovani, G., Biondi, N., Bonni G, and Mario, R.T.: Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng., 102, 100–112 (2009). doi:10.1002/bit.22033

[13] Mata, T., Martins, A.A., and Caetano, N.S.: Microalgae for biodiesel production and other applications: A review. Renew. Sust. Energ. Rev., 14, 217-232 (2010). doi:10.1016/j.rser.2009.07.020

[14] Spolaore, P., Joannis-Cassan, C., Duran, E., and Isambert, A.: Commercial applications of microalgae. J. Biosci. Bioeng., 101, 87–96 (2006).doi:10.1263/jbb.101.87

[15] Miao, X., and Wu, Q.: High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J. Biotechnol., 110, 85–93 (2004). doi:10.1016/j.jbiotec.2004.01.013

[16] Pirt, S.J., Lee, Y.K., Walach, M.R., Pirt, M.W., Balyuzi, H.H., and Bazin, M.J.: A tubular bioreactor for photosynthetic production of biomass from carbon dioxide: design and performance. J. Chem. Technol. Biotechnol., 33B, 35-58 (1983). doi:10.1002/jctb.280330105

[17] Kosaric, N. and Velikonja, J.: Liquid and gaseous fuels from biotechnology: challenges and opportunities. FEMS Microbiology Reviews, 16, 111-142

(1995). doi:10.1111/j.1574-6976.1995.tb00161.x [18] Illman, A.M., Scragg, A.H., and Shales, S.W.: (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb. Technol. 27, 631–635 (2000). PII: S0141-0229(00)00266-0

[19] Banerjee, A., Sharma, R., Chisti, Y., and Benerjee, U.C.: Botryococcus braunii: A renewable source of hydrocarbons and other chemicals. Crit. Rev. Biotechnol., 22, 245-279 (2002). doi:10.1080/07388550290789513

[20] Pienkos, P.T., and Darzins, A.: The promise and challenges of micro-algal derived biofuels. Biofuel Bioproducts Biorefin., 3, 431–440 (2009). doi:10.1002/bbb.159

[21] Gong, Y., and Jiang, M.: Biodiesel production with microalgae as feedstock: from strains to biodiesel. Biotechnol. Lett., 33, 1269–1284 (2011). doi:10.1007/s10529-011-0574-z

[22] Pokoo-Aikins, G., Nadim, A., EI-Halwagi, M.M., and Mahalec, V.: Design and analysis of biodiesel production from algae grown through carbon sequestration. Clean. Tech. Environ. Policy, (2009). doi:10.1007/s10098-009-0215-6

[23] Hu, Q., Milton, S.M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., and Darzins, A.: Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J., 54, 621–639 (2008). doi:10.1111/j.1365- 313X.2008.03492.x

[24] Melis, A., and Happe, T.: Hydrogen Production. Green Algae as a Source of Energy. Plant Physiol., 127, 740-748 (2001). www.plantphysiol.org/cgi/doi/10.1104/pp.010498

[25] Clarens, A.F., Resurreccion, E.P., White, M.A., and Colosi, L.M.: Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks. Environ. Sci. Technol., 44, 1813-1819 (2010). doi: 10.1021/es902838n

[26] Pulz, O.: Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol., 65, 635–648 (2004). doi:10.1007/s00253-004-1647-x

[27] Abou-Shanab, R.A.I., Hwang, J.H., Cho, Y., Min, B., Jeon, B.H.: Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production. Appl Energy, 88, 3300–6 (2011). http://dx.doi.org/10.1016/j.apenergy.2011.01.060

[28] Pérez, M.V.J., Castillo, P.S., Romera, O., Moreno, D.F., and Martínez, C.P.: Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure. Enzyme Microb. Technol., 34, 392–8 (2004). doi:10.1016/j.enzmictec.2003.07.010

[29] Odlare, M., Nehrenheim, E., Ribe, V., Thorin, E., Gavare, M., Grube, M.: Cultivation of algae with indigenous species –potentials for regional biofuel production. Appl. Energy, 88, 3280–5 (2011). http://dx.doi.org/10.1016/j.apenergy.2011.01.006

[30] Sanchez, S., Martinez, M.E., and Espinola, F.: Biomass production and biochemical variability of the marine microalga Isochrysis galbana in relation to culture medium. Biochem. Eng. J., 6, 13–8 (2000). PII: S1369-703X(00)00071-1

[31] Day, J.G., Slocombe, S.P., and Stanley, M.S.: Overcoming biological constraints to enable the exploitation of microalgae for biofuels. Bioresour. Technol., (2011). doi:10.1016/j.biortech.2011.05.033

[32] Li, Y., Horsman, M., Wang, B., Wu, N., and Christopher, Q.L.: Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol., 81, 629–636 (2008). doi:10.1007/s00253-008-1681-1

[33] Khotimchenko, S.V. and Yakovleva, I.M.: Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry, 66, 73–79 (2005). doi:10.1016/j.phytochem.2004.10.024

[34] Araujo, G.S., Matos, L.J.B.L., Goncalves, L.R.B., Fernandes, F.A.N., and Farias, V.R.L.: Bioprospecting for oil producing microalgal strains: evaluation of oil and biomass production for ten microalgal strains. Bioresour. Technol., 102, 5248–5250 (2011). doi:10.1016/j.biortech.2011.01.089

[35] Rao, A.R., Dayananda, C., Sarada, R., Shamala, T.R., and Ravishankar, G.A.: Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour. Technol., 98, 560–564 (2007). doi:10.1016/j.biortech.2006.02.007

[36] Reitan, K.I., Rainuzzo, J.R., and Olsen, Y.: Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J. Phycol. 30(6), 972–979 (1994). doi:10.1111/j.0022-3646.1994.00972.x

[37] Lebsky, V. K., Gonzalez-Bashan, L.E., and Bashan, Y.: Ultrastructure of coimmobilization of the microalga Chlorella vulgaris with the plant growthpromoting bacterium Azospirillum brasilense and with its natural associative bacterium Phyllobacterium myrsinacearum in alginate beads. Can. J. Microbiol., 47, 1–8 (2001). doi:10.1139-cjm-47-1-1

[38] de-Bashan, L.E., Bashan, Y., Moreno, M., Lebsky, V.K., and Bustillos, J.J.: Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense. Can. J. Microbiol., 48, 514–521 (2002). doi: 10.1139/W02-051

[39] Liu, Y., Ruan, R., and Kong, Q.: Mass culture of high oil content microalgae on wastewater and power plant flue gases. Chin. J. Bioprocess Eng., 3, 29–33 (2008). CNKI:SUN:SWJG.0.2008-03-004

[40] Nichols, H.W., and Bold, H.C.: Trichsarcina polyinorpha gene. et sp. nov. J. Phycol. 1, 34–38 (1969).

[41] Kawai, H., Motomura, T., and Okuda, K.: (2005) In: Algal culturing techniques, Anderson, R., A., (Eds.), Elsevier Academic Press, Burlington, MA, USA (2005), 133-144.

[42] Boussiba, S., and Vonshak, A.: Astaxanthin accumulation in the green algae Haematococcus pluvialis. Plant Cell Physiol., 32 (7), 1077–1082 (1991). pcp.oxfordjournals.org/content/32/7/1077.abstract

[43] Levasseur, M.P., Thomson, A., and Harrison, P.J.: Physiological acclimation of marine phytoplankton to different nitrogen sources, J. Phycol., 29, 587– 595(1993). doi:10.1111/j.0022-3646.1993.00587.x

[44] Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J.: Protein measurement with the folin phenol reagent, J. Biol. Chem., 193, 265-275 (1951). http://www.jbc.org/content/193/1/265.full.pdf+html

[45] Hedge, J.E., and Hofreiter, B.T.: In: Carbohydrate chemistry, 17th Edition. Whistler, R., L., and Be Miller, J., N. (Eds.), Academic Press New York (1962).

[46] Bligh, E.G., and Dyer, W.J.: A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37, 911-917 (1959). doi:10.1139/o59-099

[47] Kalita, N., Baruah, G., Dev Goswami, R.C., Talukdar, J., and Kalita, M.C.: Ankistrodesmus falcatus: A promising candidate for lipid production, its biochemical analysis and strategies to enhance lipid productivity. J. Microbiol. Biotech. Res., 1 (4), 148-157 (2011). http://scholarsresearchlibrary.com/JMBvol1-iss4/JMB-2011-1-4-148-157.pdf

[48] Dominguez-Bocanegra, A.R., Legarreta, I.G., Jeronimo, F.M., and Campocosio, A.T.: Influence of environmental and nutritional factors in the production of astaxanthin from Haematococcus pluvialis. Bioresour. Technol., 92, 209-214 (2004). doi:10.1016/j.biortech.2003.04.001

[49] Imamoglu, E., Dalay, M.C., and Sukan, F.V.: Influences of different stress media and high light intensities on accumulation of astaxanthin in the green alga Haematococcus pluvialis. New Biotechnol., 26, 199–204 (2009). doi:10.1016/j.nbt.2009.08.007

[50] Abdel-Rahman, M.H.M., Ali, R.M., and Said, H.A.: Alleviation of NaClinduced effects on Chlorella vulgaris and Chlorococcum hunmicola by riboflavin application. Int. J. Agric. Biol., 7(1), 58-62 (2005). http://www.fspublishers.org/ijab/pastissues/IJABVOL_7_NO_1/11.pdf

[51] Hart, B.T., Bailey, P., Edwards, R., Hortlek, K., James, K., McMohan, A., Meredith, C., and Swading, K.: A review of the salt sensitivity of the Australian fresh water biota. Hydrobiologia, 210, 105–144 (1991). doi:10.1007/BF00034684

[52] Fodorpataki, L., Bartha, C.: Salt stress tolerance of a freshwater green alga under different photon flux densities. Sludia Universities BabesBolyai, Biologia, XLIX, 2, 85-93 (2004). adatbank.transindex.ro/vendeg/htmlk/pdf5635.pdf

[53] Scragg, A.H., Illman, A.M., Carde, A., Shales, S.W.: Growth of microalgae with increased calorific values in tubular bioreactor. Biomass and Bioenergy, 23, 67-73 (2002). PII:S0961-9534(02)00028-4

[54] Scragg, A.H., Morrison, J., Shales, S.W.: The use of fuel containing Chlorella vulgaris in a diesel engine. Enzyme and Microbial Technol., 33, 884-889 (2003). doi:10.1016/j.enzmictec.2003.01.001

[55] Bhola, V., Desikan, R., Santosh, S.K., Subburamu, K., Sanniyasi, E., and Bux, F.: Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris. J. Biosci. Bioeng., 111 (3), 377-382 (2011). doi:10.1016/j.jbiosc.2010.11.006

Untitled Page