IJSER Home >> Journal >> IJSER
International Journal of Scientific and Engineering Research
ISSN Online 2229-5518
ISSN Print: 2229-5518 4    
Website: http://www.ijser.org
scirp IJSER >> Volume 3,Issue 4,April 2012
A Proposed Solution for Sorting Algorithms Problems by Comparison Network Model of Computation
Full Text(PDF, )  PP.165-168  
Author(s)
Mr. Rajeev Singh, Mr. Ashish Kumar Tripathi, Mr. Saurabh Upadhyay, Mr.Sachin Kumar Dhar Dwivedi
KEYWORDS
Sorting algorithms, comparison network, sorting network, the zero one principle, bitonic sorting network
ABSTRACT
In this paper we have proposed a new solution for sorting algorithms. In the beginning of the sorting algorithm for serial computers (Random access machines, or RAM'S) that allow only one operation to be executed at a time. We have investigated sorting algorithm based on a comparison network model of computation, in which many comparison operation can be performed simultaneously.
References
1Improved Algorithms and analysis for secretary problems and generalizations. In proceeding of the 36 th annual Symposium on foundation of computer science.

2 Mohammad Akra and Louay Bazzi: on the solution of linear recurrence equations.computional optimization and applications.

3. G.M Adel’s on-vel’skii and E.M Landis.An algorithm for the organization of information .sovier mathematics doklady.

4. Eric Bach and Jeffery Shallit.algorithmic number theoryvolume-I: Efficient algorithms, The MIT press, 1996

5 R.Bayer and E.M McCreight.Organization and maintenance of large ordered indexes.Acta Information 1(3):173-189, 1972.

6. Pierre Beauchemin, Gilles Brassard, and Claude Creapeau and Carl Pomerance.The generation of random numbers that is probably prime.

7. Yinyu Ye.Interior Point Algorithms: Theory and analysis, john wikley $Sons, 1997

8. JeanVuillemin.Adata structure for manipulating priority queues.coomunication of the ACM.

9. Mark Allen Weise.Data Structures and Problems Solving Using Java.

10. C.A.R .Hoare .Merge sort. Computer Journal, 5(!): 10-15, 1962

11. O. Angel, A.E. Holroyd, D. Romik, B. Virag, Random Sorting Network Adv. in Math., 215(2):839–868, 2007.

12. K.E.Batcher, sorting network and their application Proceedings of the AFIPS Spring Joint Computer Conference 32, 307–314 (1968).

13. D.E. Knuth the, Volume 3: Sorting and Searching, Third Edition. Addison-Wesley, 1997.ISBN 0-201-89685-0 Section 5.3.4: Networks for Sorting, pp. 219–247.

14.Ajtai, M.; Komlós, J.; Szemerédi, E. (1983), "An O(n log n) sorting network", Proceedings of the 15th Annual ACM Symposium on Theory .

15. M. S. Paterson, Improved sorting networks with O(log N) depth, Algorithmica 5 (1990), no. 1, pp. 75– 92, doi:10.1007/BF01840378.

16. M. Mitchell, an Introduction to Genetic Algorithms, the MIT Press, 1998.ISBN-0-262-63185-7. Chapter 1: Overview, pp. 21– 27

Untitled Page