IJSER Home >> Journal >> IJSER
International Journal of Scientific and Engineering Research
ISSN Online 2229-5518
ISSN Print: 2229-5518 9    
Website: http://www.ijser.org
scirp IJSER >> Volume 2, Issue 9, September 2011
Cost-Based Query Optimization with Heuristics
Full Text(PDF, 3000)  PP.  
Saurabh Kumar,Gaurav Khandelwal,Arjun Varshney,Mukul Arora
Heuristic,query,optimization,usage factor,storage file,magic tree,cost,weighted
In today's computational world,cost of computation is the most significant factor for any database management system.Searching a query from a database incurs various computational costs like processor time and communication time.Then, there are costs because of operations like projection, selection, join etc.DBMS strives to process the query in the most efficient way (in terms of 'Time') to produce the answer.In this paper we proposed a novel method for query optimization using heuristic based approach. In the proposed algorithm,a query is searched using the storage file which shows an improvement with respect to the earlier query optimization techniques. Also, the improvement increases once the query goes more complicated and for nesting query.
[1] A. Arasu, B. Babcock, S. Babu, J. McAlister and J. Widom, Characterizing Memory Requirements for Queries over Continuous Data Streams, Stanford Techinical Report, November 2001, http://dbpubs.stanford.edu/pub/2001-49

[2] R. Avnur and J. M. Hellerstein. Eddies: Continuously Adaptive Query Processing, Proceedings of the 2000 ACM SIGMOD Conference.

[3] D. Bertsekas and R. Gallager. Data Networks, Prentice Hall, 2nd edition, 1991.

[4] S. Babu, and J. Widom, Continuous Queries over Data Streams, SIGMOD Record, Sept. 2001.

[5] J. Chen, D. J. DeWitt, F. Tian and Y. Wang. Niagara-CQ: A Scalable Continuous Query System for Internet Databases, Proceedings of the 2000 ACM SIGMOD Conference.

[6] M. Datar, A. Gionis, P. Indyk and R. Motwani, Maintaining Strea m St tistics over Sliding Windows 2002 Ann al ACM SIAM

[7] M. N. Garofalakis and Y. E. Ioannidis. Parallel Query Scheduling and Optimization with Time- and Space-Shared Resources, Proceedings of the 23rd International VLDB Conference.

[8] Polynomial Heuristics for Query Optimization Nicolas Bruno, C´esar Galindo-Legaria, Milind Joshi Microsoft Corp., USA

[9] Bernstein, P. A., And Goodman, N. 1981a. The Power of Natural Semijoins.SIAMJ.Comput. 10,4, 751-771.

[10] Z. G. Ives, D. Florescu, M. Friedman, A. Levy and D. S. Weld.An Adaptive Query Execution System for Data Integration,Proceedings of the 1999 ACM SIGMOD Conference

[11] Verhofstad, J. S. M. 1978. Recovery Techniques for Database Systems.ACM Comput.Surv. 10, 2 (June), 167-195.

[12] Sockut, G. H., And Goldberg, R. P. 1979. Database Reorganization--Principles and practice.ACM Comput.Surv. 11, 4 (Dec.) 371-395.

[13] C. Lee, C.-H. Ke, J.-B.Chang and Y.-H. Chen. Minimization of Resource Consumption for Multidatabase Query Optimization,Proceedings of the 3rd IFCIS Conference.

[14] Brodie, M., Mylopoulos, J., And Schmidt, J. W.,Eds. 1984. On Conceptual Modelling.Perspectives from Artificial Intelligence, Databases, and Programming Languages. Springer, New York

[15] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie and T. G. Price. Access Path Selection in a Relational Database Management System, Proceedings of the 1979 ACM SIGMOD Conference.

[16] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin and Andrew Yu. Mariposa: A Wide- Area Distributed Database System, VLDB Journal, 1996, (5) 1:48-63.

[17] G. Schumacher. GEI’s Experience with Britton-Lee’s IDM, IWDM,1983, pp. 233-241.

[18] T. Urhan and M. J. Franklin.Xjoin: A Reactively- Scheduled Pipelined Join Operator, IEEE Data Engineering Bulletin, June 2000, (23) 2:27-33.

[19] A. N. Wilschut and P. M. G. Apers. Pipelining in Query Execution,Conference on Databases, Parallel Architectures and their Applications, Miami, 1991.

[20] Prof.M.A.Pund, S.R.Jadhao, P.D.Thakare : A Role of Query Optimization in Relational Database,International Journal of Scientific & Engineering Research, Volume 2, Issue 1, January-2011.

[21] Alpa Jain, PanagiotisIpeirotis, Luis Gravano,Building Query Optimizers for Information Extraction:The SQoUT Project

Untitled Page