IJSER Home >> Journal >> IJSER
International Journal of Scientific and Engineering Research
ISSN Online 2229-5518
ISSN Print: 2229-5518 10    
Website: http://www.ijser.org
scirp IJSER >> Volume 2, Issue 10, October 2011 Edition
Temperature and Deposition Time Dependence of the Geometrical Properties of Tin Oxide Nanostructures
Full Text(PDF, 3000)  PP.  
Author(s)
Gil Nonato C. Santos, Arnel A. Salvador, Reuben V. Quiroga
KEYWORDS
nanomaterial, horizontal vapor phase growth (HVPG) technique, photoluminescence
ABSTRACT
Tin Oxide nanomaterial was synthesized using the horizontal vapor phase growth (HVPG) technique. The study investi-gated the optimum growth parameters by varying the growth temperature from 900?C to 1200?C and growth time of 1 hour to 5 hours. The SnO2 bulk powder with purity rate of 99.99% were placed in a sealed quartz tube with a vacuum pressure of ? 10-5 Torr and baked with the desired growth parameters. The resulting nanocrystals displayed different structures ranging from nanobelts to nanorods as confirmed by the SEM. Results from EDX and DTA showed that indeed the grown samples were congruent based on the atomic composition and thermal property of the nanomaterials. The XRD also verified that the crystal structure was rutile but with low indexed peaks. Using the same growth technique, samples were grown on Silicon (100) substrate and exhibited nanorods and nanobelts. The SnO2 nanomaterial also displayed fluorescence and photoluminescence signals. The photoluminescence spectrum has a broad emission in the visible region with peaks at 558 nm and 666 nm. The visible light emission was known to be related to defect levels within the band gap of SnO2, associated with O vacancies or Sn interstitials that have formed during the synthesis process.
References
[1] F. S. Galasso, Structure and Properties of Inorganic Solids (Pergamon, New York, 1970).

[2] A provisional patent has been led by Georgia Tech Research Cooperation.

[3] D. S. Ginley, C. Bright, Mater. Res. Soc. Bull. 25, 15 (2000).

[4] N. Yamazoe, Sens. Actuators B 5, 7 (1991).

[5] C. Dekker, Phys. Today 52, 22 (1999).

[6] S. Iijima, Nature 354, 56 (1991).

[7] Y. Feldman, E. Wasserman, D. J. Srolovitz, R. Tenne, Science 267, 222 (1995).

[8] H. J. Dai et al., Nature 375, 769 (1995).

[9] Z. W. Pan et al., Adv. Mater. 12, 1186 (2000).

[10] Z. L. Wang et al., Appl. Phys. Lett. 77, 3349 (2000).

[11] W. Han, S. Fan, Q. Li, Y. Hu, Science 277, 1287 (1997).

[12] X. F. Duan, C. M. Lieber, J. Am. Chem. Soc. 122, 188 (2000).

[13] W. Q. Han et al., Appl. Phys. Lett. 71, 2271 (1997).

[14] X. F. Duan, C. M. Lieber, Adv. Mater. 12, 298 (2000).

[15] X. F. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, Nature 409, 66 (2001).

[16] A. M. Morales, C. M. Lieber, Science 279, 208 (1998).

[17] S. T. Lee, N. Wang, Y. F. Zhang, Y. H. Tang, Mater. Res. Soc. Bull. 24, 36 (1999).

[18] D. P. Yu et al., Solid State Commun. 105, 403 (1998).

[19] H. Z. Zhang et al., Solid State Commun. 109, 677 (1999).

[20] P. Yang, C. M. Lieber, J. Mater. Res. 12, 2981 (1997).

[21] The Sn nanoparticles are adhered on the surfaces of the belts rather than at the ends, in contrast to the nanowires prepared by VLS reaction (12-14) that always terminate at one end with a catalytic nanoparticle. The formation of the Sn nanoparticles is believed to be related to the decomposition of the SnO2 or SnO vapor.

[22] P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, M. L. Whelan, Electron Microscopy of Thin Crystals (Krieger, New York, 1977).

[23] The Ga2O3 nanobelts can be prepared by either heating mixed Ga2O3 powder at 1000ºC or heating GaN powders at 950ºC. The products prepared from the later reaction consists of very long single crystalline Ga2O3 nanobelts and microscale single crystalline Ga2O3 sheets.

[24] R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).

[25] T. J. Trentler et al., Science 270, 1791 (1995).

[26] G. W. Sears, Acta Metall. 3, 268 (1956).

[27] Bunshah, R., Ed., Handbook of Deposition Technologies for Films and Coatings (Park Ridge, New Jersey), 140-150, 198-202.

[28] Dai, Z. R., J. L. Gole, J. D. Stout, and Z. L. Wang, 2001, “Tin Oxide Nanowires, Nanoribbons, and Nanotubes,” J. Phys. Chem. B, 1274-1279

[29] Dai, Z. R., Z. W. Pan, and Z. L. Wang, 2002, “Growth and structure evolution of novel tin oxide diskettes,” J. Am. Chem. Soc., 8673-8680

[30] Dolbec, R., M. A. Khakani, A. M. Serventi, M. Trudeau, and R. G. Saint-Jacques, 2002, “Microstructure and physical properties of nanostructured tin oxide thin films grown by means of pulsed laser deposition,” Thin Solid Films, 419, 230-236.

[31] Fouad, O. A., 2006, “Formation of Nanostructured Tin Oxide Semiconductors by a Simple Thermal Redox Process,” Cryst. Res. Technol., 880-884

[32] J. LančokA., Santoni, M. Penza, S. Loreti, I. Menicucci, C. Minarini and M. Jelinek, 2005, “Tin oxide thin films prepared by laser-assisted metal–organic CVD: Structural and gas sensing properties,” Elsevier B.V., 1057-1060

[33] Kim, J. S., M. Y. Huh, J. P. Ahn, 2007, “Effects of Particle Size on the Oxidation Behavior of Nanophase Tin Synthesized by Inert Gas Condensation,” Trans Tech Publications, 9-12

[34] Li, Y., Y. Bando, and T. Sato, 2002, “Preparation of network-like MgO nanobelts on Si substrate,” Chem. Phys. Lett. 359, 141-145.

[35] Peterson, G. P., 1994, “An Introduction to Heat Pipes,” John Wiley and Sons Incorporated, 1-16

[36] Seung, Y. B., W. S. Hee, J. Park, H. Yang, and A. S. Se, 2002, “Synthesis and structure of gallium nitride nanobelts,” Chem. Phys. Lett. 365, 525-529.

[37] Wang Z., and H. L. Li, 2002, “Highly ordered zinc oxide nanotubules synthesized within the anodic aluminum oxide template,” Appl. Phys. A 74, 201- 203.

[38] Wang, Z. L., and Z. W. Pan, 2002, “Nanobelts of semiconductive oxides: a structurally and morphologically controlled nanomaterials system,” Int. J. Nanoscience 1, 41-45.

[39] Santos, G. N. C. “Synthesis of PbxSn1-xTe Semiconductor Crystals,” De La Salle University, 1-34

Untitled Page