IJSER Home >> Journal >> IJSER
International Journal of Scientific and Engineering Research
ISSN Online 2229-5518
ISSN Print: 2229-5518 10    
Website: http://www.ijser.org
scirp IJSER >> Volume 2, Issue 10, October 2011 Edition
Photovoltaic Cell as Power Quality conditioner for Grid connected system
Full Text(PDF, 3000)  PP.  
Author(s)
Mr.A.Hari Prasad,Mr. Y.Rajasekhar Reddy, Dr. P.V. Kishore
KEYWORDS
Circuit Simulator, Diode model parameters, Insolation, PV Cells/modules, shunt controller, MPPT algorithm
ABSTRACT
A computer simulation -derived study of photovoltaic cells/ modules, utilizing MATLAB, is demonstrated. The MATLAB is an analogue/digital simulator which estimates voltage and current in a circuit under a variety of distinctive situations. This aspect of MATLAB is used to simulate a circuit based model for PV cells/ modules and then to conduct a behavioral analysis under altering conditions of solar insolation, including blending effect, temperature, diode model variables, series and shunt resistance. In future, the supporting services provided by photovoltaic (PV) systems could speed up their penetration in to power systems. Furthermore, low power PV systems can be used effectively to enhance the power quality using MPPT algorithm. This paper presents a single-phase photovoltaic system that furnishes grid voltage support and compensation of harmonic distortion at the point of common coupling (PCC).Simulation results validate the proposed solution.
References
[1] Dzung D. Nguyen, and Brad Lehman, “Modeling and Simulation of PV arrays under changing Illumination conditions,” IEEE COMPEL Workshop Troy, NY,USA, July 16-19, 2006, pp. 295-299.

[2] A. Zekry and A. Al-Mazroo, “A Distributed SPICE Model of a Solar Cell,” IEEE Transactions on Electron Devices, Vol. 43, No. 5, May 1996, pp. 691-700.

[3] David L. King, James K. Dudley, and William E. Boyson, “A Simulation Program for Phototvoltaic Cells, Modules,and Arrays,” 25th IEEE PVSC Conf. , Washington. DC, May 13-17, 1996, pp 691-696.

[4] J.A. Gow, and C.D. Manning, “Development of a photovoltaic array model for use in power electronic simulation studies,” IEE Proceeding Electric power Application, vol. 146, No. 2, March 1999, pp. 193-200.

[5] IEEE Standard for Interconnecting Distributed Resources With Electric Power Systems, IEEE Std. 1547- 2003, 2003.

[6] IEEE Guide for Monitoring, Information Exchange, and Control of Distributed Resources Interconnected With Electric Power Systems, IEEE Std. 1547.3-2007, 2007.

[7] J. M. Guerrero, J. Matas, L. García de Vicuña, M. Castilla, and J. Miret, Wireless-control strategy for parallel operation of distributed-generation inverters,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1461–1470, Oct. 2006.

[8] J. M. Guerrero, J. Matas, L. García de Vicuña, M. Castilla, and J. Miret, “Decentralized control for parallel operation of distributed generation inverters using resistive output impedance,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 994–1004, Apr. 2007.

[9] K. De Brabandere, B. Bolsens, J. Van den Keybus, A. Woyte, J. Driesen, and R. Belmans, “A voltage and frequency droop control method for parallel inverters,” IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1107–1115, Jul. 2007.

[10] M. Bollen, Understanding Power Quality Problems: Voltage Sags and Interruptions. Piscataway, NJ: IEEE Press, 1999.

[11] M. H. J. Bollen and I. Gu, Signal Processing of Power Quality Disturbances. New York: Wiley, 2006.

[12] H. Kömürgügil and Ö. Kükrer, “A new control strategy for single-phase shunt active power filters using a Lyapunov function,” IEEE Trans. Ind. Electron., vol. 53, no. 1, pp. 305–312, Feb. 2006.

[13] M. E. Ortúzar, R. E. Carmi, J. W. Dixon, and L. Morán, “Voltagesource active power filter based on multilevel converter and ultracapacitor DC link,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 477–485, Apr. 2006.

[14] B.-R. Lin and C.-H. Huang, “Implementation of a three-phase capacitorclamped active power filter under unbalanced condition,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1621–1630, Oct. 2006.

[15] I. Exteberria-Otadui, A. López de Heredia, H. Gaztañaga, S. Bacha, and M. R. Reyero, “A single synchronous frame hybrid (SSFH) multifrequency controller for power active filters,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1640–1648, Oct. 2006.

[16] G. Escobar, P. Mattavelli, A. M. Stakovis, A. A. Valdez, and J. Leyva-Ramos, “An adaptive control for UPS to compensate unbalance and harmonic distortion using a combined capacitor/load current sensing,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 839–847, Apr. 2007.

[17] D. O. Abdeslam, P. Wira, J. Mercklé, D. Flieller, and Y.-A. Chapuis, “A unified artificial neural network architecture for active power filters,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 61–76, Feb. 2007.

[18] M. Routimo, M. Salo, and H. Tuusa, “Current sensorless control of a voltage-source active power filter,” in Proc. 20th IEEE Annu. APEC, Mar. 6–10, 2005, vol. 3, pp. 1696–1702.

[19] P. Wang, N. Jenkins, and M. H. J. Bollen, “Experimental investigation of voltage sag mitigation by an advanced static VAr compensator,” IEEE Trans. Power Del., vol. 13, no. 4, pp. 1461–1467, Oct. 1998.

[20] P. Mattavelli and F. Pinhabel Marafao, “Repetitive-based control for selective harmonic compensation in active power filter,” IEEE Trans. Ind. Electron., vol. 51, no. 5, pp. 1018–1024, Oct. 2004.

[21] F. Botterón and H. Pinehiro, “A three-phase UPS that complies with the standard IEC 62040-3,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2120–2136, Aug. 2007.

[22] G. Escobar, A. A. Valdez, J. Leyva-Ramos, and P. Mattavelli, “Repetitivebased controller for a UPS inverter to compensate unbalance and harmonic distortion,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 504–510, Feb. 2007.

[23] G. Escobar, P. R. Martínez, and J. Leyva-Ramos, “Analog circuits to implement repetitive controllers UIT feedforward for harmonic compensation,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 567–573, Feb. 2007.

[24] G. Escobar, P. R. Martínez, J. Leyva-Ramos, and P. Mattavelli, “A negative feedback repetitive control scheme for harmonic compensation,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1383–1386, Aug. 2006.

[25] R. Griñó, R. Cardoner, R. Costa-Castelló, and E. Fossas, “Digital repetitive control of a three-phase fourwire shunt active filter,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1495–1503, Jun. 2007.

[26] R. A. Mastromauro, M. Liserre, and A. Dell’Aquila, “Study of the effects of inductor nonlinear behaviour on the performance of current controllers for single-phase PV grid converters,” IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 2043–2052, May 2008.

[27] R. A. Mastromauro, M. Liserre, A. Dell’Aquila, and R. Teodorescu, “Performance comparison of current controllers with harmonic compensation for single-phase grid converter,” in Proc. 10th Int. Conf. Optimization Elect. Electron. Equip. OPTIM, Brasov, Romania, May 18– 19, 2006.

[28] W. Xiao, J. Lind, W. Dunford, and A. Capel, “Real-time identification of optimal operating points in photovoltaic power systems,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1017–1026, Aug. 2006.

[29] H. Patel and V. Agarwal, “Maximum power point tracking scheme for PV systems operating under partially shaded conditions,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1689–1698, Apr. 2008.

[30] I. Kim, M. Kim, and M. Youn, “New maximum power point tracker using sliding-mode observer for estimation of solar array current in the gridconnected photovoltaic system,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1027–1035, Aug. 2006.

[31] W. Xiao, N. Ozog, and W. G. Dunford, “Topology study of photovoltaic interface for maximum power point tracking,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1696–1704, Jun. 2007.

[32] J. Park, J. Ahn, B. Cho, and G. Yu, “Dual-modulebased maximum power point tracking control of photovoltaic systems,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1036–1047, Aug. 2006.

[33] H. Hinz and P. Mutschler, “Voltage source inverters for grid connected photovoltaic systems,” in Proc. 2nd World Conf. Exhib. Photovolt. Solar Energy Convers., Wien, Austria, Jul. 1998, pp. 2045–2048.

[34] T. Esram and P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 439–449, Jun. 2007.

[35] F. Liu, S. Duan, F. Liu, B. Liu, and Y. Kang, “A variable step size INC MPPT method for PV systems,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2622–2628, Jul. 2008.

Untitled Page