Photovoltaic Cell as Power Quality conditioner for Grid connected system

Full Text(PDF, 3000) PP.


Author(s) 
Mr.A.Hari Prasad,Mr. Y.Rajasekhar Reddy, Dr. P.V. Kishore 

KEYWORDS 
Circuit Simulator, Diode model parameters, Insolation, PV Cells/modules, shunt controller, MPPT algorithm


ABSTRACT 
A computer simulation derived study of photovoltaic cells/ modules, utilizing MATLAB, is demonstrated. The MATLAB is an analogue/digital simulator which estimates voltage and current in a circuit under a variety of distinctive situations. This aspect of MATLAB is used to simulate a circuit based model for PV cells/ modules and then to conduct a behavioral analysis under altering conditions of solar insolation, including blending effect, temperature, diode model variables, series and shunt resistance. In future, the supporting services provided by photovoltaic (PV) systems could speed up their penetration in to power systems. Furthermore, low power PV systems can be used effectively to enhance the power quality using MPPT algorithm. This paper presents a singlephase photovoltaic system that furnishes grid voltage support and compensation of harmonic distortion at the point of common coupling (PCC).Simulation results validate the proposed solution.


References 

[1] Dzung D. Nguyen, and Brad Lehman, “Modeling
and Simulation of PV arrays under changing Illumination
conditions,” IEEE COMPEL Workshop Troy, NY,USA,
July 1619, 2006, pp. 295299.
[2] A. Zekry and A. AlMazroo, “A Distributed SPICE
Model of a Solar Cell,” IEEE Transactions on Electron
Devices, Vol. 43, No. 5, May 1996, pp. 691700.
[3] David L. King, James K. Dudley, and William E.
Boyson, “A Simulation Program for Phototvoltaic Cells,
Modules,and Arrays,” 25th IEEE PVSC Conf. ,
Washington. DC, May 1317, 1996, pp 691696.
[4] J.A. Gow, and C.D. Manning, “Development of a
photovoltaic array model for use in power electronic
simulation studies,” IEE Proceeding Electric power
Application, vol. 146, No. 2, March 1999, pp. 193200.
[5] IEEE Standard for Interconnecting Distributed
Resources With Electric Power Systems, IEEE Std. 1547
2003, 2003.
[6] IEEE Guide for Monitoring, Information Exchange,
and Control of Distributed Resources Interconnected
With Electric Power Systems, IEEE Std. 1547.32007, 2007.
[7] J. M. Guerrero, J. Matas, L. García de Vicuña, M.
Castilla, and J. Miret, Wirelesscontrol strategy for
parallel operation of distributedgeneration inverters,”
IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1461–1470,
Oct. 2006.
[8] J. M. Guerrero, J. Matas, L. García de Vicuña, M.
Castilla, and J. Miret, “Decentralized control for parallel
operation of distributed generation inverters using
resistive output impedance,” IEEE Trans. Ind. Electron.,
vol. 54, no. 2, pp. 994–1004, Apr. 2007.
[9] K. De Brabandere, B. Bolsens, J. Van den Keybus,
A. Woyte, J. Driesen, and R. Belmans, “A voltage and
frequency droop control method for parallel inverters,”
IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1107–1115,
Jul. 2007.
[10] M. Bollen, Understanding Power Quality
Problems: Voltage Sags and Interruptions. Piscataway,
NJ: IEEE Press, 1999.
[11] M. H. J. Bollen and I. Gu, Signal Processing of
Power Quality Disturbances. New York: Wiley, 2006.
[12] H. Kömürgügil and Ö. Kükrer, “A new control
strategy for singlephase shunt active power filters using
a Lyapunov function,” IEEE Trans. Ind. Electron., vol. 53,
no. 1, pp. 305–312, Feb. 2006.
[13] M. E. Ortúzar, R. E. Carmi, J. W. Dixon, and L.
Morán, “Voltagesource active power filter based on
multilevel converter and ultracapacitor DC link,” IEEE
Trans. Ind. Electron., vol. 53, no. 2, pp. 477–485, Apr.
2006.
[14] B.R. Lin and C.H. Huang, “Implementation of a
threephase capacitorclamped active power filter under
unbalanced condition,” IEEE Trans. Ind. Electron., vol.
53, no. 5, pp. 1621–1630, Oct. 2006.
[15] I. ExteberriaOtadui, A. López de Heredia, H.
Gaztañaga, S. Bacha, and M. R. Reyero, “A single
synchronous frame hybrid (SSFH) multifrequency
controller for power active filters,” IEEE Trans. Ind.
Electron., vol. 53, no. 5, pp. 1640–1648, Oct. 2006.
[16] G. Escobar, P. Mattavelli, A. M. Stakovis, A. A.
Valdez, and J. LeyvaRamos, “An adaptive control for
UPS to compensate unbalance and harmonic distortion
using a combined capacitor/load current sensing,” IEEE
Trans. Ind. Electron., vol. 54, no. 2, pp. 839–847, Apr.
2007.
[17] D. O. Abdeslam, P. Wira, J. Mercklé, D. Flieller,
and Y.A. Chapuis, “A unified artificial neural network
architecture for active power filters,” IEEE Trans. Ind.
Electron., vol. 54, no. 1, pp. 61–76, Feb. 2007.
[18] M. Routimo, M. Salo, and H. Tuusa, “Current
sensorless control of a voltagesource active power filter,”
in Proc. 20th IEEE Annu. APEC, Mar. 6–10, 2005, vol. 3,
pp. 1696–1702.
[19] P. Wang, N. Jenkins, and M. H. J. Bollen,
“Experimental investigation of voltage sag mitigation by
an advanced static VAr compensator,” IEEE Trans. Power
Del., vol. 13, no. 4, pp. 1461–1467, Oct. 1998.
[20] P. Mattavelli and F. Pinhabel Marafao,
“Repetitivebased control for selective harmonic
compensation in active power filter,” IEEE Trans. Ind.
Electron., vol. 51, no. 5, pp. 1018–1024, Oct. 2004.
[21] F. Botterón and H. Pinehiro, “A threephase UPS
that complies with the standard IEC 620403,” IEEE
Trans. Ind. Electron., vol. 54, no. 4, pp. 2120–2136, Aug.
2007.
[22] G. Escobar, A. A. Valdez, J. LeyvaRamos, and P.
Mattavelli, “Repetitivebased controller for a UPS inverter
to compensate unbalance and harmonic distortion,” IEEE
Trans. Ind. Electron., vol. 54, no. 1, pp. 504–510, Feb. 2007.
[23] G. Escobar, P. R. Martínez, and J. LeyvaRamos,
“Analog circuits to implement repetitive controllers UIT
feedforward for harmonic compensation,” IEEE Trans.
Ind. Electron., vol. 54, no. 1, pp. 567–573, Feb. 2007.
[24] G. Escobar, P. R. Martínez, J. LeyvaRamos, and P.
Mattavelli, “A negative feedback repetitive control
scheme for harmonic compensation,” IEEE Trans. Ind.
Electron., vol. 53, no. 4, pp. 1383–1386, Aug. 2006.
[25] R. Griñó, R. Cardoner, R. CostaCastelló, and E.
Fossas, “Digital repetitive control of a threephase fourwire
shunt active filter,” IEEE Trans. Ind. Electron., vol.
54, no. 3, pp. 1495–1503, Jun. 2007.
[26] R. A. Mastromauro, M. Liserre, and A.
Dell’Aquila, “Study of the effects of inductor nonlinear
behaviour on the performance of current controllers for
singlephase PV grid converters,” IEEE Trans. Ind.
Electron., vol. 55, no. 5, pp. 2043–2052, May 2008.
[27] R. A. Mastromauro, M. Liserre, A. Dell’Aquila,
and R. Teodorescu, “Performance comparison of current
controllers with harmonic compensation for singlephase
grid converter,” in Proc. 10th Int. Conf. Optimization
Elect. Electron. Equip. OPTIM, Brasov, Romania, May 18–
19, 2006.
[28] W. Xiao, J. Lind, W. Dunford, and A. Capel,
“Realtime identification of optimal operating points in
photovoltaic power systems,” IEEE Trans. Ind. Electron.,
vol. 53, no. 4, pp. 1017–1026, Aug. 2006.
[29] H. Patel and V. Agarwal, “Maximum power point
tracking scheme for PV systems operating under partially
shaded conditions,” IEEE Trans. Ind. Electron., vol. 55,
no. 4, pp. 1689–1698, Apr. 2008.
[30] I. Kim, M. Kim, and M. Youn, “New maximum
power point tracker using slidingmode observer for
estimation of solar array current in the gridconnected
photovoltaic system,” IEEE Trans. Ind. Electron., vol. 53,
no. 4, pp. 1027–1035, Aug. 2006.
[31] W. Xiao, N. Ozog, and W. G. Dunford, “Topology
study of photovoltaic interface for maximum power point
tracking,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp.
1696–1704, Jun. 2007.
[32] J. Park, J. Ahn, B. Cho, and G. Yu, “Dualmodulebased
maximum power point tracking control of
photovoltaic systems,” IEEE Trans. Ind. Electron., vol. 53,
no. 4, pp. 1036–1047, Aug. 2006.
[33] H. Hinz and P. Mutschler, “Voltage source
inverters for grid connected photovoltaic systems,” in
Proc. 2nd World Conf. Exhib. Photovolt. Solar Energy
Convers., Wien, Austria, Jul. 1998, pp. 2045–2048.
[34] T. Esram and P. L. Chapman, “Comparison of
photovoltaic array maximum power point tracking
techniques,” IEEE Trans. Energy Convers., vol. 22, no. 2,
pp. 439–449, Jun. 2007.
[35] F. Liu, S. Duan, F. Liu, B. Liu, and Y. Kang, “A
variable step size INC MPPT method for PV systems,”
IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2622–2628,
Jul. 2008.


