IJSER Home >> Journal >> IJSER
International Journal of Scientific and Engineering Research
ISSN Online 2229-5518
ISSN Print: 2229-5518 11    
Website: http://www.ijser.org
scirp IJSER >> Volume 2, Issue 11, November 2011
An Overview of Ischemia Detection Techniques
Full Text(PDF, 3000)  PP.  
Author(s)
Amit Kumar Manocha, Mandeep Singhc
KEYWORDS
algorithms, ECG, Ischemia, ST segment, sensitivity, positive perdictivity, QRS
ABSTRACT
In recent years several researchers have put great efforts in biomedical engineering for improving the diagnostic techniques used by the physiologists. A lot of research has been done in biomedical signal processing which includes the signal enhancement, signal compression, artifacts and noise removal like power line interference removal, base line drift removal. For detection of cardiac arrhythmia and ischemia using ECG signal, many emerging techniques and algorithms have been proposed. Ischemia is one of the cardiovascular diseases which are responsible for almost 20% of the deaths around the world. Some of the recently developed algorithms by these researchers have given remarkable results for ischemia. In this paper we review these existing algorithms for detection of ischemia in terms of their performance and capabilities with respect to standard databases available worldwide.
References
[1] P. Coumel, O. Garfien, “Electrocardiography Past and future Ann.”, N.Y. Acad. Science, vol.60, no. 1, pp 124-135, 1990.

[2] Sergio Cerutti, “In the Spotlight: Biomedical Signal Processing”, IEEE Reviews in Biomed. Engg. vol. 1, pp 1-5, 2008.

[3] N. Maglaveras, T. Stamkopolos, Cotas Papaas, M. G. Strinzis, “An Adaptive Back-Propagation Neural Network For Real Time Ischemia Episodes Detection: Development and Performance Analysis Using the European ST-T Database”, IEEE Trans. Biomed. Engg. vol. 45, 805-813, 1998.

[4] R. Silipo, A. Taddei and C. Marchesi, “Continues Monitoring and Detection of ST-T changes in Ischemic Patients”, Computers in Car-diology, pp 225-228, 1994.

[5] P. Lanuga, G. B. Moody, R.G. Mark, “Analysis of the Cardiac Depo-larization Period Using KL Transform: Application on the ST-T Da-tabase”, Computers in Cardiology, pp 223-236, 1994.

[6] F. Jager, G. B. Moody. R.G. Mark, “Detection of Transients ST Seg-ments Episodes during Ambulatory ECG Monitoring”, Computer Biomedical Res., vol. 31, pp 305-322, 1998.

[7] A. Gharaviri, M. Teshnehlab and H.A. Moghaddam, “Ischemia De-tection Via ECG using ANFIS”, Proc: 30th Annual International Con-ference, British Columbia, Canada, pp 1163-1166, 2008.

[8] R.V. Andearo, B Dorizzi, J. Boudy and JCM Mota, “ST-Segment Analysis Using Hidden Markov Model Beat Segmentation: Applica-tion to Ischemia Detection”, Computers in Cardiology, pp 381-384, 2004.

[9] P. Ranjith, P.C. Baby, P. Joseph, “ECG Analysis Using Wavelet Trans-form: Application to Myocardial Ischemia Detection”, Elsevier ITBM-RBM, vol. 24, pp 44-47, 2003.

[10] Claudio Zizzo, Aimen Hassani and Delphine Turner, “Automatic Detection and Imaging of Ischemic changes during Electrocardio-gram Monitoring”, IEEE Trans. on Biomed. Engg. vol. 55, pp 1343-1348, 2008.

[11] H. Azhari S. Sideman , S. Sideman, J.L. Wiess, E.P. Shapiro, M.L. Wiesfeldt and R Beyar, “3-D Mapping of Acute Ischemic Regions us-ing MRI Thickening versus Motion Analysis” American J. Pysiol., vol. 259, pp 492-503, 1990.

[12] W.H. Gao, Y. Chen, “Using a Cell to ECG Model to Evaluate Ische-mia Detection from Different Lead Sets”, Computers in Cardiology, pp 329-332, 2007.

[13] H. Ritter, T. Martinetz, “Neural Compensation and Self Organizing Maps”, Reading MA: Addison-Wesley, 1992.

[14] S. Osowski, T. H. Linh, “Support Vector Machine Based Expert Sys-tem for Reliable Heart Beat Recognition”, IEEE Trans. Biomed. Engg. vol. 31, no. 3, pp 582-589, 2004.

[15] T. Goletsis, C Papaloukas, D. I. Fotiadis, Aristidis and L. K. Michalis., “Automated Ischemic beat Classification using Genetic Algorithm and Multi criteria Decision Analysis”, IEEE Trans. on Biomed. Engg. vol. 51, pp 2356-2367, 2004.

[16] C. Zopounidis, M. Doumpos, “Multi Criteria Classification and Sort-ing Methods: A Literature Review”, Eur. J. Oper. Res., vol. 138, pp 229-246, 2002.

[17] G. Markos, V. Costas, “A Framework for Fuzzy Expert System Crea-tion- Application to Cardiovascular Disease”, IEEE Trans. on Biom. Engg. vol. 54, no. 2, pp 2089-2105, 2007.

[18] H. N. Teodrescu, A. Kandel, L. Jain, “Fuzzy and Neuro Fuzzy Sys-tems in Medicine”, CRC Press Boca, Raton, 1999.

[19] C. M. Maclachlan, B. F. Nielsen, M. Lysaker and Aslak Tveito, “Computing the Size and Location of Myocardial Ischemia Using Measurement of ST Segment Shift”, IEEE Trans. on Biomed Engg. , vol. 53, pp 1024-1031, 2006.

[20] R.S. Macleod, M Garder, “Application of an Electrocardiography Inverse Solution to Localize Ischemia during Coronary Angioplasty”, Jour. of Cardiovascular Electrophysiology, pp 6-18, 1995.

[21] T. S. Ruud, B.F. Nielsen M. Lysaker and J. Sundnes, “A Computa-tionally Efficient Method for Determining the Size and Location of Myocardial Ischemia”, IEEE Trans on Biomed. Engg, vol. 56, pp 263-272, 2009.

[22] E. P. L. Sornmo, Pablo Lguna, “QRS Slopes for Detection and Charac-terization of Myocardial Ischemia”, IEEE Trans. on Biomed. Engg., vol. 55, pp 468-477, 2008.

[23] J. Petterson O. Ahlm, E. Cario, L. Edenbramdt, M. Ringborn L. Sornmo, “Changes in High Frequency QRS Components are more Sensitive Than ST Segment Deviation for Detecting Acute Coronary Artery Occlusion”, Jour. American Coll. Cardiol., pp 1827-1834, 2000.

[24] B. J. Drew, N.M. Pelter, D.E. Brodnick, A.V. Yadav, D. Dempel and M. G. Adams, “Comparison Of New Reduced Lead Set ECG with the Standard ECG for Diagnosing Cardiac Arrhythmia and Myocardial Ischemia”, Journal of Electro-Cardiology, pp 13-21, 2002.

[25] J.Y. Wang M. Mirmoghisi, J.W. Warren, GS Wanger and BM Hora-cek, “Detection of Acute Myocardial Ischemia by Vessel Specific Leads Derived from the 12 Lead Electrocardiograms”, Computers in cardiology, pp 301-304, 2007.

[26] Wei Zhang, Linlin Ge, “An algorithm for Wavelet Transform Sub-band Filter Based ECG Signals Detecting”, Computers in Cardiology, pp2068-2071, 2007.

[27] D. Lemire, C. Pharand, J.C. Rajaonah, Wavelet Time Entropy, T wave Morphology and Myocardial Ischemia”, IEEE Trans on Biomed Engg, , vol. 47, pp 967-970, 2000.

[28] L. Pang, M. Braecklein, K.Egorouchkina and A. Bolz, “Real Time Heart Ischemia Detection in the Smart Home Care System”, Proceed-ing of IEEE Engineering in Medicine and Biology, 27th Annual Con-ference, Shanghai, China, pp 3703-3706, 2005.

[29] Kang Ming Chnag, Zhong, Shing Hong Liu and Chu- Chang Tyan, “Myocardial Ischemia Detection by Pulse Signal Features and Fuzzy Clustering”, IEEE International Conference on Biomed. Engg. & In-formatics, China, pp 473-477, 2008.

[30] A. Cimponeriu C. Frank Starmer, “Theoretical Analysis of Acute Ischemia and Infraction using ECG Reconstruction on a 2-D model of Myocardium”, IEEE Trans. on Biomed. Engg. vol. 48, pp 41- 54, 2001.

[31] S. Papadimitriou, S. Mavroudi, L. VIadutu and A. Bezerianos, “Ischemia Detection with a Self Organizing Map Supplemented by Supervised Learning”, IEEE Trans. on Neural Networks, vol. 12, no. 1, pp 2342-2353, 2001.

[32] L. Dranca, A. Goni, “Using Decision Trees for Real Time Ischemia Detection”, Proc. Of the 19th IEEE Symposium on Computer based medical System, Newborn, pp 1-5, 2006.

[33] R. Silipo, C. Marchesi, “Artificial Neural Networks for Automatic ECG analysis”, IEEE Trnas. On Signal Processing, vol. 14, pp 1417-1425, 1998.

[34] T. P. Exarchos, C. Papaloukas, “An Association Rule Mining Based Methodology for Automated Beat Detection of Ischemia ECG Beats”, IEEE Trans. on Biomed. Engg. vol. 53, no. 6, pp 1531-1540, 2006.

[35] C. Papaloukas, D. I. Fortiadis, “A Knowledge Based Technique for Automated Detection of Ischemic Episodes in Long Duration Elec-trocardiograms”, Medical and Biological Engg. & Comp, vol. 39, pp 105-112, 2001.

[36] D. Papolokas, D. J. Fotiadis, “An Expert System for Ischemia Detec-tion Based on Parametric Modeling and Artificial Neural Networks”, Procd. of Eur. Biol. Eng. Conference, pp 742-748, 2002.

[37] R. V. Andreao, B. Dorizzi, “ST-segment Analysis using Hidden Mar-kov Model Beat Segmentation: Application to Ischemia Detection”, Computers in Cardiology, pp 381-384, 2004.

[38] M. J. Polak, S. H. Zhout, “Adaptive Logic Network Compared with Back propagation Network in Automated Detection of Ischemia from Resting ECG”, Commuters in Cardiology, pp 217-220, 1995.

[39] J. Vila, J. Presedo, “Sutil: Intelligent Ischemia Monitoring System”, Intern. J. Med. Informatics, pp 193-214, 1997.

[40] J. Garcia., L. Sornmo, “Automatic Detection of ST-T Complex Changes on the ECG using filtered RMS Difference Series: Applica-tion to ambulatory Ischemia Monitoring”, IEEE Trans. on Biomed. Engg, vol. 31, no.2, pp 1195-1201, 2005.

[41] A. Taddei, G. Constantion, R. Silipo, M. Emdin and C. Marchesi, “A System for Detection in Ischemic Episodes in Ambulatory ECG”, Computers in Cardiology, pp 705-708, 1995.

[42] T. Stamkopolous, Nicos Maglaveras, “ECG Analysis Using Nonlinear PCA Neural Network of Ischemia Detection”, IEEE Trans. on Signal Processing, vol. 46, no. 4, pp 3058-3067, 1998.

[43] D.A. Coast R.M. Stren, G.C. Cano and S.A. Briller, “An Approach to Cardiac Arrhythmia Analysis using Hidden Markov models”, IEEE Trans. on Biomedical Engg., vol. 3, no. 5, pp 826-836, 1990.

Untitled Page