IJSER Home >> Journal >> IJSER
International Journal of Scientific and Engineering Research
ISSN Online 2229-5518
ISSN Print: 2229-5518 12    
Website: http://www.ijser.org
scirp IJSER >> Volume 3,Issue 12,December 2012
A Note on Cordial, Edge Cordial Labeling of Pythagoras Tree Fractal Graphs
Full Text(PDF, )  PP.562-566  
A.A. Sathakathulla and Muhammad Akram
Fractals, Pythagoras tree, cordial, Edge cordial labeling
This paper deals with the concept of self-similarity fractals of two types of Pythagoras tree symmetric and asymmetric graphs with existence of cordial and Edge cordial labeling. A square graph is considered as base for constructing the Pythagoras tree fr
[1] A. Aggarwal and M. V. Kartikeyan, Pythagoras tree: a fractal patch antenna for multi-frequency and ultra-wide band-Width operations, Progress In Electromagnetic Research C, Vol. 16, (2010), 25-35.

[2] M. Barnsley, Fractals Everywhere, Academic Press Inc., 1988.

[3] G.S. Bloom and S. W. Golomb Applications of numbered undirected graphs, Proc of IEEE, 65(4), (1977), 562-570.

[4] I. Cahit, Cordial Graphs: A weaker version of graceful and harmonious Graphs, Ars Combinatoria, 23, (1987), 201-207.

[5] R. Devaney and L. Keen, eds., Chaos and Fractals: The Mathematics Behind the Computer Graphics, American Mathematical Society, Providence, RI, 1989

[6] J. A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 16, #DS 6, (2009).

[7] F. Harary, Graph Theory, Massachusetts, Addison Wesley, (1972).

[8] J. Pourahmadazar, C. Ghobadi, J. Nourinia, Novel Modified Pythagorean Tree Fractal Monopole Antennas for UWB Applications, Antennas and Wireless Propagation Letters, IEEE Vol. 10, (2011), 484 - 487.

[9] M. Seoud and A. E. I. Abdel Maqsoud, “On cordial and balanced labeling of graphs”, Journal of Egyptian Math. Soc., Vol. 7, (1999), 127-135.

[10] M. Sundaram, R. Ponraj and S. Somasundram Prime Cordial Labeling of graphs, J. Indian Acad. Math.,27(2), (2005), 373-390.

Untitled Page