IJSER Home >> Journal >> IJSER
International Journal of Scientific and Engineering Research
ISSN Online 2229-5518
ISSN Print: 2229-5518 12    
Website: http://www.ijser.org
scirp IJSER >> Volume 3,Issue 12,December 2012
Effects of variable viscosity on Three-Dimensional Boundary Layer Flow of Non-Newtonian Fluids over a Stretching Surface with Mass and Heat Transfer
Full Text(PDF, )  PP.98-105  
Author(s)
P. K. Mahanta, G. C. Hazarika
KEYWORDS
Boundary layer, heat transfer, non-newtonian , stretching surface, three-dimensional flow, thermal conductivity , Variable viscosity, Visco-elastic fluid.
ABSTRACT
Three dimensional flow of non-Newtonian viscoelastic fluid with the variation in the viscosity over a stretching surface is investigated. The governing partial differential equations of continuity, momemtum, energy and concentration are transformed into n
References
[1] B. C. Sakiadis, “Boundary-layer behavior on continuous solid surface”, AIChEJ. 7, pp. 26-28, 1961.

[2] L. E. Erickson, L. T. Fan and V. G. Fox, “Heat and Mass transfer on a moving continuous at plate with suction or injection”, Ind. Eng. Chem. Fundam., vol. 5, pp. 19-25, 1966.

[3] L. J. Crane, “Flow past a stretching sheet”, Z. Appl. Math. Phys., vol 21, pp. 645-647, 1970.

[4] M.E Ali, “On thermal boundary layer on a power-law stretche Surface with suction or injection ”, Int. J. Heat Fluid Flow, vol. 16 pp. 280-290, 1995.

[5] A. Chakrabarti and A. S. Gupta, “Hydromagnetic flow and heat transfer over a stretching sheet ”, Quarterly Journal of Mechanics and Applied mathematics, vol. 37, pp. 73-78, 1979.

[6] P. S. Gupta and A. S. Gupta, “Heat and mass transfer on a stretching Sheet with suction or blowing”, Canadian J. Chem. Engng., vol. 55 pp. 744- 746, 1977.

[7] F. Labropulu, D. Li, I. Pop, ”Non-orthogonal stagnation-point flow towards a stretching surface in a non-Newtonian fluid with heat transfer.”, Int. J. Thermal. Sci., vol. 49, pp. 1042-1050, 2010.

[8] B. Sahoo,”Effects of slip on sheet-driven flow and heat transfer of a non-Newtonian fluid past a stretching sheet.”, Comput. Math. Appl., vol 61, 2011.

[9] N. Mustafa, S. Asghar, M. A. Hossain, ”Natural convection flow of second-grade fluid along a vertical heated surface with variable heat flux.”, Int. J. Heat Mass. Transfer., vol 53, pp. 5856-5862, 2010.

[10] T. Hayat, M. Hussain, S. Nadeem, S. Mesloud, ”Falkaner-Skan wedge flow of a power-law fluid with mixed convection and porous medium.”, Comput. Fluids, vol 49, pp. 22-28, 2011.

[11] T. Hayat, M. Sajid, I. Pop, “Three-dimensional Flow over a Stretching Surface in a Viscoelastic Fluid”, Nonlinear Anal: Real World Applications, vol 9, pp. 1811-1822, 2008.

[12] V. G. Fox, L. E. Ericksen and L. T. Fan, “The laminar boundary Layer on a moving continuous flat sheet immersed in a non-Newtonian fluid”, AIChE J., vol 15, pp. 327-333, 1969.

[13] K. Vajravelu and D. Rollins, “Heat transfer in a viscoelastic fluid over a stretching sheet”, J. Math. Anal. Appl., vol 158, pp. 241-255, 1991.

[14] M. Mahantesh, M. Nandeppanavar, K. Subhas Abel and K. Vajravelu, “Flow and heat transfer characteristics of a viscoelastic fluid in a porous medium over an impermeable stretching sheet with viscous dissipation.”, Int. J. Heat Mass Transfer, vol. 53, pp. 4707-4713, 2010.

[15] I. A. Hassanien, A. Essawy and N. M. Morsy, “Variable viscosity and thermal conductivity effects on heat transfer by natural convection from a cone and a wedge in porous media”, Arch. Mech., vol 55, pp. 345-356, 2004.

Untitled Page