IJSER Home >> Journal >> IJSER
International Journal of Scientific and Engineering Research
ISSN Online 2229-5518
ISSN Print: 2229-5518 8    
Website: http://www.ijser.org
scirp IJSER >> Volume 2, Issue 8, August 2011
Antimicrobial Silver Nanomaterials Synthesized by HVPCG Technique
Full Text(PDF, 3000)  PP.  
Wilfred V. Espulgar, Gil Nonato C. Santos
alternative method, antimicrobial, evaporation-condensation process, framework building, top-down technique, silver nanomaterials, solid route
Triangular silver nanoplates, of different orientations, and other nanostructures were successfully synthesized using the Horizontal Vapor Phase Crystal (HVPC) Growth technique for antimicrobial purposes in this study. This finding demonstrates HVPC as an alternative and simple technique to synthesize ordered silver nanomaterials for antimicrobial study.
[1] Polizzi, and M. Meneghetti, “Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization,” Langmuir, vol. 23, pp. 6766–6770, 2007.

[2] S. Navaladian, B. Viswanathan, T.K. Varadarajan, and R.P. Viswanath, “Microwave-assisted rapid synthesis of anisotropic Ag nanoparticles by solid state transformation,” Nanotechnology, vol.19, pp. 1–7, 2008.

[3] E.J. Fernandez, J. Garcıa-Barrasa, A. Laguna, J. Lopez-de- Luzuriaga, M. Monge, and C. Torres, “The preparation of highly active antimicrobial silver nanoparticles by an organometallic approach,” Nanotechnology, vol. 19, pp. 1–6, 2008.

[4] V. Thomas, M.M. Yallabu, B. Sreedhar, and S.K. Bajpai, “A versatile strategy to fabricate hydrogel–silver nanocomposites and investigation of their aAntimicrobial activity,” J Colloid Interface Sci, vol. 315, pp. 389–395, 2007.

[5] J.A. Jacob, H.S. Mahal, N. Biswas, T. Mukherjee, and S. Kapoor, “Role of phenol derivatives in the formation of silver nanoparticles,” Langmuir, vol. 24, pp. 528–533, 2008.

[6] L. Hua, J. Chen, L. Ge, and S.N. Tan, “Silver nanoparticles as matrix for laser desorption/ionization mass spectrometry of peptides,” J Nanopart Res, vol. 9, pp.1133–1138, 2007.

[7] B.J. Wiley, Y. Chen, J.M. McLellan, Y. Xiong, Z. Li, D. Ginger, et al., “Synthesis and optical properties of silver nanobars and nanorice,” Nano Letters, vol. 7, pp. 1032–1036, 2007.

[8] S.T. Dubas and V. Pimpan, “Humic acid assisted synthesis of silver nanoparticles and its application to herbicide detection,” Mater Lett B, vol. 62, pp. 2661–2663, 2008.

[9] S. Navaladian, B. Viswanathan, T.K. Varadarajan, and R.P. Viswanath, “Microwave-assisted rapid synthesis of anisotropic Ag nanoparticles by solid state transformation,” Nanotechnology, vol. 19, pp. 1–7, 2008.

[10] S.J. Kim, T.G. Kim, C.S. Ah, K. Kim, and D. Jang, “Photolysis dynamics of benzyl phenyl sulfide adsorbed on silver nanoparticles,” J Phys Chem B, vol. 108, pp. 880–882, 2004.

[11] R.D. Deshmukh and R.J. Composto, “Surface segregation and formation of silver nanoparticles created in situ in poly(methyl methacrylate) films,” Chem Mater, vol. 19, pp. 745–754, 2007.

[12] N. Nino-Martınez, G.A. Martınez-Castanon, A. Aragon-Pina, F. Martınez-Gutierrez, J.R. Martınez-Mendoza, and F. Ruiz, “Characterization of silver nanoparticles synthesized on titanium dioxide fine particles,” Nanotechnology, vol. 19, pp. 1–8, 2008.

[13] W-L.Chou, D-G. Yu, and M-C.Yang, “The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment,” Polymers for Advance Technology, vol. 16, pp. 600-607, 2005.

[14] M. Jin, X. Zhang, S. Nishimoto, Z. Liu, D.A. Tryk, A.V. Emeline, et al., “Light-stimulated composition conversion in TiO2-based nanofibers,” Journal of Physical Chemistry C, vol. 111(2), pp. 658- 665, 2007.

[15] Q. Chen, L. Yue, F. Xie, M. Zhou, Y. Fu, Y. Zhang, et al., “Preferential facet of nanocrystalline silver embedded in polyethylene oxide nanocomposite and its antibiotic behaviors,” Journal of Physical Chemistry C, vol. 112(27), pp. 10004-10007, 2008.

[16] L. Kvitek, A. Panacek, J. Soukupova, M. Kolar, R. Vecerova, R. Prucek, et al., “Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs),” Journal of Physical Chemistry C, vol. 112(15), pp. 5825-5834, 2008.

[17] J.R.Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J. Kouri, J.T. Ramirez, et al., ‘The bactericidal effect of silver nanoparticles,” Nanotechnology, vol. 16, pp. 2346-2353, 2005.

[18] S. Pal, Y.K. Tak, and J.M. Song, “Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli,” Appl Environ Microbiol, vol. 73, pp. 1712–1720, 2007.

[19] T. Tolaymat, A. El Badawy, A. Genaidy, K. Scheckel, T. Luxton, and M. Suidan, An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peerreviewed scientific papers,” Science of the Total Environment, vol. 408, pp. 999-1006, 2010.

[20] K. Lehtinen, U. Backman, J. Jokiniemi, and M. Kulmala, “Three-body collisions as a particle formation mechanism in silver nanoparticle synthesis,” Journal of Colloid and Interface Science, vol. 274, pp. 526–530, 2004.

[21] G. Castillon, “Synthesis and characterization of Indium (III) Oxide nanomaterials grown via horizontal vapor phase crystal growth technique,” M.S. Physics thesis, De La Salle University- Manila, Philippines, 2009.

[22] G. Cao, Nanostructures & Nanomaterials: Synthesis, Properties & Applications, London: Imperial College Press, 2004.

Untitled Page