sg-Interior and sg-Closure in Topological spaces
S. Sekar and K. Mariappa

Abstract: In this paper, we introduce sg-interior, sg-closure and some of its basic properties.

Keywords: sg-open; sg-closed; sg-int(A); sg-cl(A); sg-Hausdorff space.

AMS Subject Classification: 54C10, 54C08, 54C05, 54E55.

1. INTRODUCTION AND PRELIMINARIES

Levine [6] introduced generalized closed sets in topology as a generalization of closed sets. This concept was found to be useful and many results in general topology were improved. Many researchers like Arya et al [2], Balachandran et al [3], Bhattacharya et al [4], Arcockarani et al [1], Gnanambal [5], Malghan [7], Nagaveni [8] and Palaniappan et al [9] have worked on generalized closed sets. In this paper, the notion of sg-interior is defined and some of its basic properties are investigated. Also we introduce the idea of sg-closure in topological spaces using the notions of sg-closed sets and obtain some related results.

Throughout the paper, X and Y denote the topological spaces and respectively and on which no separation axioms are assumed unless otherwise explicitly stated.

Definition 1.1 A subset A of a space X is called

1) A preopen set if A ⊆ int(cl(A)) and a preclosed if cl(int(A)) ⊆ A

2) A regular open set if A = int(cl(A)) and regular closed set if A = cl(int(A))

3) A semi open set if A ⊆ cl(int(A)) and semi closed set if int(cl(A)) ⊆ A

The intersection of all preclosed subsets of X containing A is called pre-closure of A and is denoted by pcl(A)

Definition 1.2: A subset A of a space X is called

1) A g-closed set [6] if cl(A) ⊆ U whenever A ⊆ U and U is open in X

2) semi generalized closed set [4] if scl(A) ⊆ U whenever A ⊆ U and U is semi open in X.

3) generalized preclosed set [7] if clint(A) ⊆ U whenever A ⊆ U and U is open in X.

The complements of the above mentioned closed sets are their respective open sets.

Definition 1.3: Let X be a topological space and let x ∈ X. A subset N of X is said to be sg-neighbourhood of x if there exists a sg-open set G such that x ∈ G ⊂ N.

2. SG–CLOSURE AND INTERIOR IN TOPOLOGICAL SPACE.

Definition 2.1: Let A be a subset of X. A point x ∈ A is said to be sg-interior point of A if x is a sg-interior point of A.

In the paper, X and Y denote the topological spaces and respectively and on which no separation axioms are assumed unless otherwise explicitly stated.

Theorem 2.1: If A be a subset of X. Then sg-int(A) = ∪ { G : G is a sg-open, G ⊂ A }.

Proof: Let A be a subset of X.

X ∈ sg-int(A) ⇔ x is a sg-interior point of A.

⇔ A is a sg-nbd of point x.

⇔ there exists sg-open set G such that x ∈ G ⊂ A.

Hence sg-int(A) = ∪ { G : G is a sg-open, G ⊂ A }.

Theorem 2.2: Let A and B be subsets of X. Then

(i) sg-int(X) = X and sg-int(φ) = φ

(ii) sg-int(A) ⊆ A.

(iii) If B is any sg-open set contained in A, then B ⊂ sg-int(A).

(iv) If A ⊆ B, then sg-int(A) ⊆ sg-int(B).

(v) sg-int(sg-int(A)) = sg-int(A).
Theorem 2.5: If A and B are subsets of X, then sg-int(A ∩ B) ⊆ sg-int(A) ∩ sg-int(B).

Proof: We know that A ∩ B ⊆ A and A ∩ B ⊆ B. We have sg-int(A ∩ B) ⊆ sg-int(A) and sg-int(A ∩ B) ⊆ sg-int(B). This implies that sg-int(A ∩ B) ⊆ sg-int(A) ∩ sg-int(B).

Again let x ∈ sg-int(A) ∩ sg-int(B). Then x ∈ sg-int(A) and x ∈ sg-int(B). Hence x is a sg-int point of each of sets A and B. It follows that A and B is sg-nbhd of x, so their intersection A ∩ B is also a sg-nbhd of x. Hence x ∈ sg-int(A ∩ B). Thus x ∈ sg-int(A ∩ B) implies that x ∈ sg-int(A) ∩ B. Therefore sg-int(A) ∩ sg-int(B) ⊆ sg-int(A ∩ B) ----(1)

From (1) and (2),

We get sg-int(A ∩ B) = sg-int(A) ∩ sg-int(B).

Theorem 2.6: If A is a subset of X, then int(A) ⊆ sg-int(A).

Proof: Let A be a subset of X.

Let x ∈ int(A) ⇒ x ∈ ∪ {G : G is open, G ⊆ A}.

⇒ there exists an open set G such that x ∈ G ⊆ A.

⇒ there exists a sg-open set G such that x ∈ G ⊆ A, as every open set is a sg-open set in X .

⇒ x ∈ ∪ {G : G is sg-open, G ⊆ A}.

⇒ x ∈ sg-int(A).

Thus x ∈ int(A) ⇒ x ∈ sg-int(A). Hence int(A) ⊆ sg-int(A).

Remark 2.1: Containment relation in the above theorem may be proper as seen from the following example.

Example 2.2: Let X = [a,b,c] with topology τ = {X, ø, {b}, {b,c}}. Then sg-O(X) = {X, ø, {a}, {b}, {a,b}, {a,c}, {b,c}}.

Let A = [a,b] and int(A) = {b}. It follows that int(A) ⊆ sg-int(A) and int(A) ≠ sg-int(A).

Theorem 2.7: If A is a subset of X, then g-int(A) ⊆ sg-int(A), where g-int(A) is given by g-int(A) = ∪ {G : G is g-open, G ⊆ A}.

Proof: Let A be a subset of X.

Let x ∈ int(A) ⇒ x ∈ ∪ {G : G is g-open, G ⊆ A}.

⇒ there exists a g-open set G such that x ∈ G ⊆ A.

⇒ there exists a sg-open set G such that x ∈ G ⊆ A, as every g-open set is a sg-open set in X.
\[\Rightarrow x \in \bigcup \{ G : G \text{ is sg-open, } G \subseteq A \}. \]

\[x \in \text{sg-int}(A). \]

Hence \(g \text{-int}(A) \subseteq \text{sg-int}(A). \)

Remark 2.2: Containment relation in the above theorem may be proper as seen from the following example.

Example 2.3: Let \(X = \{a,b,c\} \) with topology \(\tau = \{X, \varnothing, \{a\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}. \) Then \(\text{sg-o}(X) = \{X, \varnothing, \{c\}, \{a\}, \{a,b\}, \{a,c\}, \{b,c\}\}. \) & \(g \text{- open} (X) = \{X, \varnothing, \{a\}, \{c\}, \{a,c\}\}. \) Let \(A = \{b,c\}, \) \(\text{sg-int}(A) = \{b,c\} \) & \(g \text{-int}(A) = \{c\}. \) It follows \(g \text{-int}(A) \subseteq \text{sg-int}(A) \) and \(g \text{-int}(A) \neq \text{sg-int}(A). \)

Definition 2.2: Let \(A \) be a subset of a space \(X. \) We define the \(\text{sg-} \) closure of \(A \) to be the intersection of all \(\text{sg-} \) closed sets containing \(A. \) In symbols, \(\text{sg-cl}(A) = \bigcap \{ F : A \subseteq F \subseteq \text{sgc}(X) \}. \)

Theorem 2.8: If \(A \) and \(B \) are subsets of a space \(X. \) Then

(i) \(\text{sg-cl}(X) = X \) and \(\text{sg-cl}(\varnothing) = \varnothing \)

(ii) \(A \subseteq \text{sg-cl}(A). \)

(iii) If \(B \) is any \(\text{sg-} \) closed set containing \(A, \) then \(\text{sg-cl}(A) \subseteq \text{sg-cl}(B). \)

(iv) If \(A \subseteq B \) then \(\text{sg-cl}(A) \subseteq \text{sg-cl}(B). \)

Proof: (i) By the definition of \(\text{sg-} \) closure, \(X \) is the only \(\text{sg-} \) closed set containing \(X. \) Therefore \(\text{sg-cl}(X) = \text{sgcl}(X) = X. \) That is \(\text{sg-cl}(X) = X. \) By the definition of \(\text{sg-} \) closure, \(\text{sg-cl}(\varnothing) = \bigcap \{ \varnothing \} = \varnothing. \) That is \(\text{sg-cl}(\varnothing) = \varnothing. \)

(ii) By the definition of \(\text{sg-} \) closure of \(A, \) it is obvious that \(A \subseteq \text{sg-cl}(A). \)

(iii) Let \(B \) be any \(\text{sg-} \) closed set containing \(A. \) Since \(\text{sg-cl}(A) \) is the intersection of all \(\text{sg-} \) closed sets containing \(A, \) \(\text{sg-cl}(A) \) is contained in every \(\text{sg-} \) closed set containing \(A. \) Hence in particular \(\text{sg-cl}(A) \subseteq B. \)

(iv) Let \(A \) and \(B \) be subsets of \(X \) such that \(A \subseteq B. \) By the definition \(\text{sg-cl}(B) = \bigcap \{ F : B \subseteq F \subseteq \text{sgc}(X) \}. \) If \(B \subseteq F \subseteq \text{sgc}(X), \) then \(\text{sg-cl}(B) \subseteq F. \) Since \(A \subseteq B, \) \(A \subseteq F \subseteq \text{sgc}(X), \) we have \(\text{sg-cl}(A) \subseteq F. \) There fore \(\text{sg-cl}(A) \subseteq \bigcap \{ F : B \subseteq F \subseteq \text{sgc}(X) \} = \text{sg-cl}(B). \)

(i.e) \(\text{sg-cl}(A) \subseteq \text{sg-cl}(A). \)

Theorem 2.9: If \(A \subseteq X \) is \(\text{sg-} \) closed, then \(\text{sg-cl}(A) = A. \)

Proof: Let \(A \) be \(\text{sg-} \) closed subset of \(X. \) We know that \(A \subseteq \text{sg-cl}(A). \) Also \(A \subseteq A \) and \(A \) is \(\text{sg-} \) closed. By theorem (iii) \(\text{sg-cl}(A) \subseteq A. \) Hence \(\text{sg-cl}(A) = A. \)

Remarks 2.3: The converse of the above theorem need not be true as seen from the following example.

Example 2.4: Let \(X = \{a,b,c\} \) with topology \(\tau = \{X, \varnothing, \{a\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}. \) Then \(\text{sg-cl}(X) = \{X, \varnothing, \{a\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}. \) \(\text{sg-cl}(\{b\}) = \{b\}. \) But \(\{b\} \) is not \(\text{sg-} \) closed in \(X. \)

Theorem 2.10: Let \(A \) and \(B \) be subsets of a space \(X. \) Then \(\text{sg-cl}(A \cap B) \subseteq \text{sg-cl}(A) \cap \text{sg-cl}(B). \)

Proof: Let \(A \) and \(B \) be subsets of \(X. \) Clearly \(A \cap B \subseteq A \) and \(A \cap B \subseteq B. \)

By theorem \(\text{sg-cl}(A \cap B) \subseteq \text{sg-cl}(A) \) and \(\text{sg-cl}(A \cap B) \subseteq \text{sg-cl}(B). \)

Hence \(\text{sg-cl}(A \cap B) \subseteq \text{sg-cl}(A) \cap \text{sg-cl}(B). \)

Theorem 2.11: If \(A \) and \(B \) are subsets of a space \(X \) then \(\text{sg-cl}(A \cup B) = \text{sg-cl}(A) \cup \text{sg-cl}(B). \)

Proof: Let \(A \) and \(B \) be subsets of \(X. \) Clearly \(A \subseteq A \cup B \) and \(B \subseteq A \cup B. \) We have \(\text{sg-cl}(A \cup B) = \text{sg-cl}(A) \cup \text{sg-cl}(B). \)
If \(A \subset F \in C(X) \), then \(A \subset F \in sg-C(X) \), because every closed set is sg-closed. That is \(sg-cl(A) \subset F \). There fore \(sg-cl(A) \subset \bigcap \{ F \subset X : F \in C(X) \} = cl(A) \).

Hence \(sg-cl(A) \subset cl(A) \).

Remark 2.4: Containment relation in the above theorem may be proper as seen from the following example.

Example 2.5: Let \(X = \{ a, b, c \} \) with topology \(\tau = \{ X, \varnothing, \{ a \}, \{ b \}, \{ c \}, \{ a, b \}, \{ b, c \} \} \).

Then \(sg-cl(X) = \{ X, \varnothing, \{ a \}, \{ b \}, \{ c \}, \{ a, b \}, \{ b, c \} \} \) and \(g-cl(X) = \{ X, \varnothing, \{ b \}, \{ a, b \}, \{ b, c \} \} \).

Let \(A = \{ b, c \}, \) \(sg-cl(A) = \{ b, c \} \) and \(g-cl(A) = \{ b \} \).

It follows \(g-cl(A) \subset sg-cl(A) \) and \(g-cl(A) \neq sg-cl(A) \).

Theorem 2.14: If \(A \) is a subset of \(X \), then \(sg-cl(A) \subset g-cl(A) \), where \(g-cl(A) \) is given by \(g-cl(A) = \bigcap \{ F \subset X : A \subset F \) and \(f \) is a g-closed set in \(X \).

Proof: Let \(A \) be a subset of \(X \). By definition of \(g-cl(A) = \bigcap \{ F \subset X : A \subset F \) and \(f \) is a g-closed set in \(X \) \). If \(A \subset F \) and \(F \) is a g-closed subset of \(x \), then \(A \subset F \in sg-cl(X) \), because every g closed is sg-closed subset in \(X \). That is \(sg-cl(A) \subset F \).

Therefore \(sg-cl(A) \subset \bigcap \{ F \subset X : A \subset F \) and \(f \) is a g-closed set in \(X \) = \(g-cl(A) \).

Hence \(sg-cl(A) \subset g-cl(A) \).

Corrolary 2.1: Let \(A \) be any subset of \(X \). Then

(i) \(sg-int(A)^c = sg-cl(A)^c \)

(ii) \(sg-int(A) = (sg-cl(A))^c \)

(iii) \(sg-cl(A) = (sg-cl(A))^c \)

Proof: Let \(x \in sg-int(A)^c \). Then \(x \not\in sg-int(A) \). That is every sg-open set \(U \) containing \(x \) is such that \(U \not\subset A \).

That is every sg-open set \(U \) containing \(x \) is such that \(U \cap A \neq \varnothing \). By theorem \(x \in sg-int(A)^c \) and there fore \(sg-int(A)^c \subset sg-cl(A)^c \).

Conversely, let \(x \in sg-cl(A)^c \).

Then by theorem, every sg-open set \(U \) containing \(x \) is such that \(U \cap A \neq \varnothing \). That is every sg-open set \(U \) containing \(x \) is such that \(U \not\subset A \).

That is \(x \in sg-int(A)^c \) and \(sg-cl(A)^c \subset (sg-int(A))^c \).

Thus \(sg-int(A)^c = sg-cl(A)^c \).

(i) Follows by taking complements in (i).

(ii) Follows by replacing \(A \) by \(A^c \) in (i).

3. Preservation theorems concerning \(g \)-Hausdorff and \(sg \)-Hausdorff spaces

In this section we investigate preservation theorems concerning \(g \)-Hausdorff spaces.

Defintion 3.1: A topological space \(X \) is said to be \(g \)-Hausdorff if whenever \(x \) and \(y \) are distinct points of \(X \) there are disjoint \(g \)-open sets \(U \) and \(V \) with \(x \in U \) and \(y \in V \).

It is obvious that every Hausdorff space is \(g \)-Hausdorff space. The following example shows that the converse is not true.

Example 3.1: Let \(X = \{ a, b, c \} \) and \(\tau = \{ X, \varnothing, \{ a \} \} \). It is clear that \(X \) is not Hausdorff Space. Since \(\{ a \}, \{ b \} \) and \(\{ c \} \) are all \(g \)-open, it follows that \(H \) is \(g \)-Hausdorff Space.

Theorem 3.1: Let \(X \) be a topological space and \(Y \) be Hausdorff. If \(f: X \to Y \) is injective and \(g \)-continuous, then \(x \) is \(g \)-Hausdorff.

Proof: Let \(x \) and \(y \) be any two distinct points of \(X \). Then \(f(x) \) and \(f(y) \) are distinct points of \(Y \), because \(f \) is injective. Since \(Y \) is Hausdorff, there are disjoint open sets \(U \) and \(V \) in \(Y \) containing \(f(x) \) and \(f(y) \) respectively. Since \(f \) is \(g \)-continuous and \(U \cap V = \varnothing \), we have \(f(U) \) and \(f(V) \) are disjoint \(g \)-open sets in \(X \) such that \(x \in f(U) \) and \(y \in f(V) \). Hence \(X \) is \(g \)-Hausdorff space.

Definition 3.2: A topological space \(X \) is said to be \(g \)-Hausdorff Space if whenever \(x \) and \(y \) are distinct points of \(X \) there are disjoint \(g \)-open sets \(U \) and \(V \) with \(x \in U \) and \(y \in V \).

It is obvious that every \(g \)-Hausdorff space is a \(g \)-Hausdorff space. The following example shows that the converse is not true.

Example 3.1: Let \(X = \{ a, b, c \} \) and \(\tau = \{ X, \varnothing, \{ a \} \} \). Since \(\{ a \}, \{ b \} \) and \(\{ c \} \) are all \(g \)-open, then \(X \) is \(g \)-Hausdorff space. Since \(\{ a \}, \{ b \} \) and \(\{ c \} \) are not \(g \)-open in \(X \), it follows that \(\{ a \} \) and \(\{ c \} \) can not be separated by any two disjoint \(g \)-open sets in \(X \).

Hence \(X \) is not \(g \)-Hausdorff Space.

Theorem 3.2: Let \(X \) be a topological space \(Y \) be Hausdorff space. If \(f: X \to Y \) is injective and \(g \)-continuous, then \(X \) is \(g \)-Hausdorff Space.

Proof: Let \(x \) and \(y \) be any two distinct points of \(X \). Then \(f(x) \) and \(f(y) \) are distinct points of \(Y \), because \(f \) is injective. Since \(Y \) is Hausdorff, there are disjoint open sets \(U \) and \(V \) in \(Y \) containing \(f(x) \) and \(f(y) \) respectively. Since \(f \) is \(g \)-continuous and \(U \cap V = \varnothing \), we have \(f(U) \) and \(f(V) \) are disjoint \(g \)-open sets in \(X \) such that \(x \in f(U) \) and \(y \in f(V) \). Hence \(X \) is \(g \)-Hausdorff space.

Theorem 3.3: Let \(X \) be a topological space \(Y \) be Hausdorff space. If \(f: X \to Y \) is injective and \(g \)-irresolute, then \(X \) is \(g \)-Hausdorff space.

Proof: Let \(x \) and \(y \) be any two distinct points of \(X \). Then \(f(x) \) and \(f(y) \) are distinct points of \(Y \), because \(f \) is injective. Since \(Y \) is Hausdorff, there are disjoint open sets \(U \) and \(V \) in \(Y \) containing \(f(x) \) and \(f(y) \) respectively. Since \(f \) is \(g \)-irresolute and \(U \cap V = \varnothing \), we have \(f(U) \) and \(f(V) \) are disjoint \(g \)-open sets in \(X \) such that \(x \in f(U) \) and \(y \in f(V) \). Hence \(X \) is \(g \)-Hausdorff space.

4. Conclusion

From the definitions of \(g \)-Hausdorff space and \(sg \)-Hausdorff space, we have result.
X is a Hausdorff Space \implies X is a g-Hausdorff Space \implies X is a sg- Hausdorff Space.

REFERENCES