USE OF DESCRIPTOR FINGERPRINTS TO SIMILARITY AND CLUSTER ANALYSIS OF BIODIESEL FUELS ON THE BASIS OF THEIR COMPOSITION AND PROPERTIES.

INTRODUCTION OF FUZZY DESCRIPTOR FINGERPRINTS.

Ivan P. Bangov1* Marina N. Moskovkina1, Zilya A. Mustafa2, Rumyana S. Milina2

1 General Chemistry Chair, Faculty of Natural Sciences, Konstantin Preslavski University of Shumen, 115 Universitetska Str., Shumen 9712, Bulgaria, 2 Central Research Laboratory, Faculty of Natural Science, Prof. Assen Zlatarov University, 1 Prof. Yakimov Str., Burgas 8010, Bulgaria.

* Author to whom correspondence should be addressed.
ivan.bangov@gmail.com

ABSTRACT: A novel approach for similarity search of different objects, fuzzy descriptor fingerprints has been devised. Each cluster is characterized by a fuzzy descriptor fingerprint which is formed of real values instead of Boolean values 0=false and 1=true. A novel similarity index for similarity comparison between Boolean and fuzzy fingerprints, Fuzzy Factor (FF) has been introduced. This method was exemplified with similarity and cluster analysis of biodiesel fuels.

Keywords: fingerprints, fuzzy descriptor fingerprints, clustering, Fuzzy Factor (FF), biodiesels.
INTRODUCTION

The present paper introduces a novel chemometric approach of a new type of descriptor fingerprints - *fuzzy descriptor fingerprints* applied to the problem of classification of biodiesel fuels. Descriptor fingerprints approach devised by one of the authors (IB)(1) has been previously successfully applied to the solution of the problem of discrimination between allergens and non-allergens (2) and clustering of biodiesels (3) by using the Butina method (4). With the present introduction of the fuzzy descriptor fingerprints, each cluster is assigned with a fuzzy fingerprint.

Biodiesel fuel is composed by methyl esters of long chain fatty acids (FAME) produced from plant oils, animal fats and other lipids [5-7]. As a “green” fuel biodiesel has a series of advantages over petro-diesel fuels such as their derivation from renewable feed-stock, biodegradability, non-toxic and essentially free of metals, sulfur, carcinogenic aromatics fuel as well as low greenhouse effect and a positive energy balance.

Feed-stock availability for biodiesel production depends on the geography, climate and economics of different countries. At present, the dominant feed-stock (about 80 %) is vegetable oils, namely soy bean oil in USA, rapeseed and sunflower oil in Europe and palm oil in Southeast Asia. Other feed-stock having real or potential commercial interest are animal fats, non-edible and waste oils. Traditional for Bulgaria feed-stock are sunflower and rapeseed oils.

Since biodiesel is a mixture of *Fatty Acid Methyl Esters* (FAME), its properties depend on the chemical structure of the individual FAME and their contents (FAME profile). FAME profiles of biodiesel are influenced by the stocks and origin of the oils used [5,7,8] and can be obtained by chromatographic methods [9-13] providing valuable multi-component information. So, FAME profiles appears to be an instrument for a selection of feed-stock to produce fuels with certain properties [8,14], for investigations [15,16], and for fuel spillage and remedial actions in the environment [17,18].

THE DESCRIPTOR FINGERPRINT APPROACH.

Fingerprints in Chemoinformatics are primarily developed to characterize chemical structures within the various similarity search procedures [19-21]. The latter are usually formed in two ways. In the most popular way an array of structural fragments (structural keys), e.g. 1024 is created. A fingerprint is a string or binary array of *1s* and *0s*. The elements of the fragment array are juxtaposed to the fingerprint array elements having one-to-one correspondence between fragments and the array elements (see Figure 1). Each studied structure is further fragmented and analyzed for the presences or absence of fragments from the fragment array. In the case of presence of such a fragment a number (bit) *1* is put into the corresponding position (element) of the fingerprint string (bit) array and vice verse in the case of the absence of the corresponding fragment a *0* is put into the corresponding location within the fingerprint. It should be mentioned that the Daylight company has developed
another type of fingerprints - hashed fingerprints[22]. However this approach is out the scope of this work and will not be discussed here.

The fingerprints are usually employed in QSAR/QSPR for similarity search and clustering of structures. (Figure 1). Two chemical structures are compared for similarity by comparing their fingerprints by using any similarity measures available in literature [23,24]. For our further investigation we use the well-known Tanimoto [25] similarity index (TI) having the following form:

$$TI = \frac{N_C}{N_A + N_B - N_C}$$ \hspace{2cm} (1)

where N_A is the number of 1s in the first structure fingerprint A, N_B - is the corresponding number of the second structure fingerprint B, and N_C is the number of 1s common to both structure fingerprints, i.e., 1s being in the same position of the compared fingerprints. This index takes real values between 0.0 and 1.0. The larger is the value the most similar are the two structures. A comprehensive description of Tanimoto index is given in [23,24]. It is clear that the structural fingerprints incorporate Boolean logic, 1=true and 0=false.

Figure 1. Formation of structural fingerprints for three structures.

Our idea was to employ descriptors instead of structure fragments in the formation of the fingerprints. A descriptor fingerprint is created by determination an interval for each descriptor within the fingerprint array and precision of its possible
values, e.g. an initial value (let us call it *initValue*) and ending value (*endValue*) and a precision step (resolution) *resValue*. Hence, for each descriptor its interval is divided into \(N = (\text{initValue} - \text{endValue}) / \text{resValue} \) discrete fingerprint array elements (sub-intervals). The concatenation of all the descriptor elements forms the descriptor fingerprint itself. Further, in the course of descriptor creation for an object the program determines in which element (sub-interval) the current descriptor value falls by putting 1 in this element, the other descriptor elements remaining zeros. The formation of a descriptor fingerprint is illustrated in Figure 2.

This approach can be applied both to chemical structures and to various other chemical and non-chemical objects. It has been applied to discrimination between allergen/non-allergen food proteins [2], and to biodiesel fuels in our case. It obviously extends the area of application of the fingerprint method outside the chemical structure description, even outside chemistry, by using any physical, chemical, and biological as well as other user defined properties for descriptors of forming the descriptor fingerprint. In cases of chemical structures the structural fingerprints can also be concatenated to the descriptor fingerprints, thus both the chemical structure and its properties to be characterized by a common fingerprint. Accordingly, it allows the inclusion of all information available to the similarity perception process.

![Figure 2. Formation of a descriptor fingerprint.](image)

The descriptors forming a descriptor fingerprint can be both real values or some Boolean values indicating the presence or absence of a feature (any color, presence or absence of a property, chemical group, etc.). These discrete descriptors take one element of the fingerprint array, being either 1 or 0. A general requirement is the quality of the descriptors to describe uniquely the studied objects and being well discriminating. Here the values of the individual FAME profiles for each biodiesel probe (case)
have been used as descriptors. Two types of descriptors have been used ones having real numerical values and indicator ones indicating the presence (1) or absence (0) of a property.

INTRODUCTION TO FUZZY DESCRIPTOR FINGERPRINTS.

As mentioned above the fingerprint approach reflects the classical Boolean logic (1=true and 0=false). We shall call these fingerprints Boolean fingerprints. However, in the case of any type of clustering we have in many cases the 1s falling in different positions within a descriptor interval for different objects of the same cluster. Hence, our aim was to reflect this fact by using fuzzy instead of Boolean logic. Fuzzy logic was developed by Zadeh [26]. In place of discrete values 1 and 0, here we have real values between 0.0 and 1.0, say, we can have a value of 0.17 (17%) and respectively 0.83 (83%) instead 0 and 1. Accordingly, at each element of any descriptor interval (as mentioned above the descriptor interval is divided into sub-intervals) we will have real values between 0.0 and 1.0.

For the formation of the fuzzy fingerprints, in our case, we have created clusters as described in the Experimental section. For each such a cluster the program sums all the 1s of all cluster fingerprints falling in each fingerprint array element (descriptor sub-interval). Let the sum being denoted as S_d. In as much as, each descriptor must have value 1 we delete the S_d sums of each sub-interval element to the number n_d of all 1s falling in the descriptor interval. Hence, the fuzzy fingerprint array element values are as follows (see **Figure 3**):

$$S_d = \frac{\sum_{fps}^{} 1s}{n_d}$$

Thus, each separate cluster consisting of a number of Boolean fingerprints is represented by one fuzzy fingerprint. This approach has an additional advantage in the case of large databases. By using cluster fuzzy descriptor fingerprints the number of the database fingerprints is reduced to the number of the clusters instead to the number of the objects/Boolean fingerprints.

Accordingly, the similarity comparison is carried out between one or more query object Boolean fingerprints and the fuzzy fingerprint representing the corresponding clusters. Here, we cannot use the Tanimoto index as a measure of similarity. Hence, we introduce a new **Fuzzy Factor (FF)** given with relation (3):

$$FF = 1.0 - \frac{\sum_d (1.0 - S_d)}{N_d}$$

Here S_d are the sums (2) which positions correspond to the positions of the 1s in the query Boolean fingerprint, divided by the number of the descriptors N_d. Thus, for each query fingerprint we obtain N_{clst} solutions, where N_{clst} is the number of clusters.
On can see from the relation 3 that in case of no coincidence of the query fingerprints of value I with fuzzy fingerprint elements of value different from zero all S_d sums will be zero then the FF will be also zero. In case of coincidence of the query fingerprints of value I with fuzzy fingerprint elements of value different from zero all S_d sums will be 1.0 then the FF will be also 1.0. The most probable query object falls in the cluster having the maximal FF value and it is considered the most similar to the associated object having the most similar properties to the corresponding cluster. The formation of fuzzy fingerprints is depicted in Figure 3 and similarity search in fuzzy clusters is illustrated in Figure 4.

Figure 3. Creation of fuzzy fingerprints.

Figure 4. Depiction of the similarity search procedure between a query and a cluster fuzzy fingerprints.

It should be mentioned here one additional advantage of the employment of fuzzy descriptor fingerprints. Their use reduces substantially the representation and search in large databases, as each fuzzy fingerprint representing one and only one
cluster which often consists of a large number of Boolean fingerprints. On the other hand in as much the fuzzy fingerprint values represent the weights of the descriptors (properties) the coincidence of element 1 of the query fingerprints to the corresponding fuzzy descriptor element gives the weight (influence) of this descriptor on the query fingerprint. Each cluster is associated with some query properties, e.g. in the case of biodiesels names of the oils, citane index, color, etc. (In our case they are given as a string), thus the maximal FF with a cluster assumes that the query object has also these properties.

EXPERIMENTAL

A set of 98 biodiesel samples belonging to 6 different classes of biodiesel oils – sunflower, rape, corn, soybean, palm and peanut, as well as samples of oil mixtures of the these classes has been used for our fingerprint analysis. The FAME-profile for each sample was created by gas chromatographic (GC) analysis. All GC analyses were performed on a GC system Agilent Technologies 7890A equipped with FID, split/splitless injector and Agilent 7693A automated liquid sampler. The fatty acid methyl esters composition (%) of biodiesels being produced of different vegetable oils (Fatty acid methylster palmitate (C16:0), palmitoleate (C16:1), stearate (C18:0), olate (C18:1), linoleate (C18:2), linolenate (C18:3), arachidate (C20:0), cis-11-eicosanoate (C20:1), behenate (C22:0), cis-13-docosanoate (C22:1), tetracosanoate (C24:0), cis-15-tetracosanoate (C24:1), SAT – total esters of saturated acids, MUNS- total esters of monounsaturated acids, PUNS - total esters of polyunsaturated acids) was determined and used for descriptors for the fingerprint creation.

The program written in Java consists of four tabs. A descriptor configuration file is created in the first tab. This file describes each descriptor with its initVal, endVal and resVal values. By using this configuration file and reading the data from a tab-tabulated text file (converted from an Excel file) fingerprint (*.fp) and names (*.nam) files are generated in the next tab. Any information about the separate objects, consisting of the oil names, some of their properties, is encoded in the names file. The values of the cetane number were additionally introduced in the names file. In the Clustering tab the fingerprint files are further used for clustering (by using Butina method) and creation of fuzzy descriptor fingerprints. The similarity search is carried out in the next Similarity Search tab.

Results and Discussion

We have explored two ways of forming clusters, the first one is the clustering to be carried out in a natural way according to the origin of biodiesel, i.e., one cluster of sunflower oil, one cluster of rape, one cluster of soybean fingerprints, etc, oils. No clustering procedure was used to this end. Then, the number of the clusters will be 11 (see Table 1) and the number of the biodiesels forming this type of clusters is the same as these given in Table 1.

The second way of clustering is based on the Tanimoto index similarity of the source file Boolean type descriptor fingerprints by using the method of Butina [4] leading to the creation of two files: a cluster (*.clust) file containing the cluster fingerprints, and an output (*.out) text file of the generated clusters. The clustering procedure is based on an analysis through a
pair-wise comparison of the fingerprints and selection by using a threshold Tanimoto value (TV). All generated pairs having TI below the threshold value are discarded, the remaining pairs being further sorted in a decreasing order of the TI values.

Table 1. Number of clusters formed from biodiesels of different vegetable origin. (* X means mixtures of unknown or partially unknown composition).

<table>
<thead>
<tr>
<th>Cluster No</th>
<th>Name of the biodiesel oil origin</th>
<th>Number of samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sunflower</td>
<td>33</td>
</tr>
<tr>
<td>2</td>
<td>rape</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>corn</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>soybean</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>palm</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>peanut</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>X-mix-rape*</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>X-mix-sunflower*</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>X-mix-sunflower-soy*</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>X-mix-soy-rape*</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>X-mix*</td>
<td>2</td>
</tr>
</tbody>
</table>

Two options concerning the threshold value are encoded in this approach. The first one is a user chosen manual input of the threshold value, the second an automatic generation of it. The automatic generation implies an initial pair-wise comparison of all the objects (data-set Boolean fingerprints) at a threshold value equal to zero, subsequent sorting downwards with respect to TI value, and a further step of comparing the names (including types of oils) of the objects. When a difference between the names is encountered the corresponding TI value plus 0.000001 is accepted for the threshold value. Thus, we found automatically the threshold value of 0.5763 in our case.

At the next step, fuzzy descriptor fingerprints characterizing each cluster are generated for both types of clusters according to the methods discussed above.

An internal validation using the Boolean descriptor fingerprints of the 98 biodiesels (here called query fingerprints) against the cluster fuzzy descriptor fingerprints, generated by the first type of clustering, was carried out in the third Similarity Search tab and the results for each Boolean fingerprint are sorted in descending order with respect of the FF values generated. In Listing 1 in Appendix 1 all results for the Boolean query 1, and the maximal and second maximal FF results for the others are provided.
Some of the query biodiesel fuels denoted by X are mixtures of partly know composition. One can see from Listing 1 that except from the first case 98 query \textbf{X-mix-soy-rape} being mixture of unknown X and soybean and rape composition which produces low FF value, the method accurately recognizes the known oil in all the other cases. The NO MATCH flag is generated by simple string comparison of the names (String type) of biodiesels of the fuzzy cluster and the name of Boolean query fingerprint, e.g., Query name “sunflower” with fuzzy name “sunflower” which implies that the result is correct. Vice verse, comparing the Query name “sunflower” with cluster name “rape” will produce NO MATCH flag. Hence, some of the X-mix-... comparisons, denoted by NO MATCH flag might be correct.

An external validation was performed by separating the test series of 98 biodiesel oils into two groups. The first group (data-set group) was formed with 83 oils belonging to 6 classes of biodiesels (sunflower, rape, corn, soy bean, palm, and peanut) with a known origin. The fuzzy descriptor fingerprints for these clusters were generated. The second query group consists of 15 analytes of both biodiesels of known, partially known and unknown constitution (the two later denoted by X).

The maximal FF results of similarity comparison between the 15 Boolean query fingerprints each one with the 6 cluster fuzzy fingerprints are provided in Figure 5. One can see that only in one case, the maximal FF fingerprint 98 of X-mix-soy-rape produces corn biodiesel to cluster 3, although the full mixture is not known. The mark NO MATCH is assigned if the names of the biodiesels does not coincide (string comparison) with the oil names of the clusters, which is the case of all X-*** mixtures, although the results look correct. Hence this procedure could be applied as an analytic method for elucidation of any mixture composition. The other cases marked as no matching are unknown mixtures other cases marked as no matching are unknown mixtures denoted as X. As discussed above, the program compares the names of the biodiesels as strings and mark them with NO MATCH flag if they are not equal. One can see that in all but mixture 98 the method recognizes at least one of the mixture component. However in case 98 the X component is not known.
Next, by using the Butina method for clustering using the Boolean descriptor fingerprints we generated a new set of 18 clusters. They, together with the number of fingerprints in each cluster are depicted in Table 2.

Further, from the clusters generated in such a way the fuzzy descriptor fingerprints characterizing each cluster are generated according the method discussed above. Then, an internal validation using the query Boolean descriptor fingerprints of the 98 biodiesels against the cluster fuzzy descriptor fingerprints is carried out and the results for each Boolean fingerprint are sorted in descending order with respect to the FF values generated. Results having maximal FF for each query Boolean descriptor fingerprint, compared to all cluster fuzzy fingerprints are provided in Listing 2 in Appendix 1. The query biodiesel fuels are mixtures of partly known composition. One can see from Figure 5 that except from the first case query 63 soy bean with Cluster 6 the method accurately recognizes the known oil in all the other cases.

CONCLUSIONS

The application of the method of descriptor fingerprints to the problems of clustering of biodiesels indicates that they can be a useful tool to this end. A novel type of **fuzzy descriptor fingerprints** related to each cluster and a new Fuzzy Factor index have been introduced and tested with our set of 98 biodiesels. They were generated both from the 12 clusters shown in Table 1, formed from biodiesels composed of uniform oil types - sunflower, rape, corn, soybean, palm peanut, etc., each cluster being represented by one fuzzy fingerprint.
Additionally, 18 fuzzy clusters fingerprints generated from the 18 clusters (Table 2) obtained by employing the method of Butina, have been treated by using 98 query Boolean descriptor fingerprints. The search and subsequent clustering results, based on the highest FF value for each query fingerprint indicate that the fuzzy fingerprint approach leads to very good discrimination between different biodiesel fuels.

Table 2. Clusters generated by Butina method, and number of biodiesels in each cluster.

<table>
<thead>
<tr>
<th>Cluster No</th>
<th>biodiesel kind</th>
<th>Nu of biodiesels</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sunflower</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>sunflower</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>rape</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>rape</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>rape</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>corn</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>corn</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>corn</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>soy bean</td>
<td>19</td>
</tr>
<tr>
<td>10</td>
<td>palm</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>peanut</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>peanut</td>
<td>1</td>
</tr>
<tr>
<td>13-18</td>
<td>X-***</td>
<td>each one x1</td>
</tr>
</tbody>
</table>

*Author to whom correspondence should be addressed.
Acknowledgment: This work has been supported by grant DFNI IO1/7 of the National Fund for Scientific Investigation and under project № RD-03-255/09.03.2015, of “Scientific Research” section of Konstantin Preslavsky University of Shumen.

REFERENCES

25. https://www.google.bg/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=tanimoto %20coefficient

Appendix 1.

PRINT Clusters for Queries

MAX FF fingerprint Query 1 ---sunflower with CLUSTER 1 sunflower FF=0.48737
Query 1 ---sunflower with CLUSTER 8 X-mix-sunfl FF=0.23333 --- NO MATCH
Query 1 ---sunflower with CLUSTER 7 X-mix-rape FF=0.13333 --- NO MATCH
Query 1 ---sunflower with CLUSTER 4 soybean FF=0.14035 --- NO MATCH
Query 1 ---sunflower with CLUSTER 11 X-mix-soy-rape FF=0.20000 --- NO MATCH
Query 1 ---sunflower with CLUSTER 10 X-mix-sunfl-soy FF=0.20000 --- NO MATCH
Query 1 ---sunflower with CLUSTER 9 X-mix FF=0.20000 --- NO MATCH
Query 1 ---sunflower with CLUSTER 5 palm FF=0.22222 --- NO MATCH

MAX FF fingerprint Query 2 ---sunflower with CLUSTER 1 sunflower FF=0.49545
Query 2 ---sunflower with CLUSTER 8 X-mix-sunfl FF=0.43333 --- NO MATCH
MAX FF fingerprint Query 3 ---sunflower with CLUSTER 1 sunflower FF=0.54280
Query 3 ---sunflower with CLUSTER 3 com FF=0.38611 --- NO MATCH
MAX FF fingerprint Query 4 ---sunflower with CLUSTER 1 sunflower FF=0.57917
Query 4 ---sunflower with CLUSTER 3 com FF=0.47778 --- NO MATCH
MAX FF fingerprint Query 5 ---sunflower with CLUSTER 1 sunflower FF=0.62563
Query 5 ---sunflower with CLUSTER 3 com FF=0.44444 --- NO MATCH
MAX FF fingerprint Query 6 ---sunflower with CLUSTER 1 sunflower FF=0.61957
Query 6 ---sunflower with CLUSTER 3 com FF=0.44444 --- NO MATCH
MAX FF fingerprint Query 7 ---sunflower with CLUSTER 1 sunflower FF=0.55169
Query 7 ---sunflower with CLUSTER 3 com FF=0.44444 --- NO MATCH
MAX FF fingerprint Query 8 ---sunflower with CLUSTER 1 sunflower FF=0.55694
Query 8 ---sunflower with CLUSTER 3 com FF=0.41944 --- NO MATCH
MAX FF fingerprint Query 9 ---sunflower with CLUSTER 1 sunflower FF=0.6199
Query 9 ---sunflower with CLUSTER 3 com FF=0.41111 --- NO MATCH
MAX FF fingerprint Query 10 ---sunflower with CLUSTER 1 sunflower FF=0.64505
Query 10 ---sunflower with CLUSTER 8 X-mix-sunfl FF=0.43333 --- NO MATCH
MAX FF fingerprint Query 11 ---sunflower with CLUSTER 1 sunflower FF=0.5166
Query 11 ---sunflower with CLUSTER 8 X-mix-sunfl FF=0.40000 --- NO MATCH
MAX FF fingerprint Query 12 ---sunflower with CLUSTER 1 sunflower FF=0.5266
Query 12 ---sunflower with CLUSTER 10 X-mix-soy-rape FF=0.6666 --- NO MATCH
MAX FF fingerprint Query 13 ---sunflower with CLUSTER 1 sunflower FF=0.63081
Query 13 ---sunflower with CLUSTER 3 com FF=0.27700 --- NO MATCH
MAX FF fingerprint Query 14 ---sunflower with CLUSTER 1 sunflower FF=0.63169
Query 14 ---sunflower with CLUSTER 3 com FF=0.30278 --- NO MATCH
MAX FF fingerprint Query 15 ---sunflower with CLUSTER 1 sunflower FF=0.63169
Query 15 ---sunflower with CLUSTER 3 com FF=0.30278 --- NO MATCH
MAX FF fingerprint Query 16 ---sunflower with CLUSTER 1 sunflower FF=0.62765
Query 16 ---sunflower with CLUSTER 3 com FF=0.33611 --- NO MATCH
MAX FF fingerprint Query 17 ---sunflower with CLUSTER 1 sunflower FF=0.62563
Query 17 ---sunflower with CLUSTER 3 com FF=0.32766 --- NO MATCH
MAX FF fingerprint Query 18 ---sunflower with CLUSTER 1 sunflower FF=0.55492
Query 18 ---sunflower with CLUSTER 4 soybean FF=0.28070 --- NO MATCH
MAX FF fingerprint Query 19 ---sunflower with CLUSTER 1 sunflower FF=0.58030
Query 19 ---sunflower with CLUSTER 8 X-mix-sunfl FF=0.33333 --- NO MATCH
MAX FF fingerprint Query 20 ---sunflower with CLUSTER 1 sunflower FF=0.60947

IJSER © 2017
http://www.ijser.org
Listing 1. Results from internal validation of the 98 fingerprints versus all 11 fuzzy cluster descriptor fingerprints, generated by the 11 clusters. The full results are presented only for the 1st query fingerprint, the maximal and second maximal FF results provided for the other query fingerprints.

PRINT Clusters for Queries

<table>
<thead>
<tr>
<th>Query</th>
<th>---sunflower with CLUSTER 1</th>
<th>soy bean FF=0.49735</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>---sunflower with CLUSTER 2</td>
<td>soy bean FF=0.3333</td>
</tr>
<tr>
<td>1</td>
<td>---sunflower with CLUSTER 14</td>
<td>X-mix-sunfl FF=0.6667</td>
</tr>
<tr>
<td>1</td>
<td>---sunflower with CLUSTER 16</td>
<td>X-mix-sunfl FF=0.3333</td>
</tr>
</tbody>
</table>

MAX FF Fingerprint Query 1 ---sunflower with CLUSTER 1 soy bean FF=0.49735

Query 1 ---sunflower with CLUSTER 2 soy bean FF=0.3333

Query 1 ---sunflower with CLUSTER 14 X-mix-sunfl FF=0.6667

Query 1 ---sunflower with CLUSTER 16 X-mix-sunfl FF=0.3333

NO MATCH
Listing 2. Internal validation by comparing the 98 Boolean query fingerprints with fuzzy fingerprints of the 18 clusters generated by the Butina method. The first query is presented to all 18 fuzzy fingerprints, the other queries with maximal FF.