

I ABSTRACT

Qt is a cross-platform application framework that
is widely used for developing application software with a
graphical user interface (GUI). It is currently produced by
Nokia's Qt Development Frameworks division, which came
into being after Nokia's acquisition of the Norwegian
company Trolltech, the original producer of Qt. Qt uses
standard C++ but makes extensive use of a special code
generator (called the Meta Object Compiler, or moc)
together with several macros to enrich the language. Non-
GUI features include SQL database access, XML parsing,
thread management, network support, and a unified cross-
platform API for file handling.

In this project we are implementing high-
performance 32-bit microprocessors such as S3C2440,
embedded Linux system and Qt / embedded GUI
application for Laboratory Intelligent Monitoring System.

Embedded front-end machine use Samsung's
S3C2440 ARM processor as the main controller, to which
the sensors are connected. We will be using Temperature
Sensor and Humidity Sensor for this project. The
microprocessor collects the data for the environment of
the lab and uses the TCP / IP to send it to the monitoring
center for processing.

The ARM processor will also have some relays
connected to it for switching off or on any electrical
equipment in the laboratory when the laboratory sensors
data is abnormal, such as the temperature is too high. ARM
Processor is equipped with a touch LCD monitor, which
enables us to develop friendly GUI using QT under
embedded Linux system to provide functions such as
querying and setting the laboratory environment
parameters.

Various types of sensors have their own specific
device drivers due to the different working principles. So,
we will have to make different device drivers for both the
sensors.

Black Diagram

Keywords-embedded linux; Qt / Embedded; S3C2440
ARM microprocessor; Intelligent Monitoring System

II INTRODUCTION

The embedded systems which use micro-
controller such as 8-bit microcontroller as the main
controller has been widely used in various fields, but most
of these applications are still in the low-level stag1e of
stand-alone use of the embedded system. It is feasible and
forward-looking to apply the high-performance 32-bit
microprocessors such as S3C2440, embedded linux system
and Qt / embedded GUI application to practical industrial
control in certain occasion.

Nowadays the management of the domestic
laboratories in the research institute and universities has
issues of poor real time, high cost and low precision .It is
difficult to determine the quality of the environment of the
laboratory. So the Laboratory Intelligent Monitoring
System should be developed to implement early warning,
remote control, real-time monitoring and other functions.
This paper focuses on the process and difficult points in the
application of embedded GUI based on Qt / Embedded and
Linux device driver in the laboratory environment
intelligent monitoring system.

The Research of Qt_Embedded and Embedded Linux Application
in the Intelligent Monitoring System Control

1N. SaiJithendra, 2 D.Aruna kumari, 3Prof K V Murali Mohan

1M. Tech Student, Holy Mary Institute of Technology & Science, Bogaram (V), Keesara (M), R. R Dt.- 501301.
2Assistant Professor, ECE, Holy Mary Institute of Technology & Science, Bogaram (V), Keesara (M), R. R Dt.- 501301

3Professor,HOD of ECE Dept, Holy Mary Institute of Technology & Science, Bogaram (V), Keesara (M), R. R Dt.- 501301

1saijithendra.nalagatla@gmail.com, 2arunadasari12@gmail.com, 3kvmmece@gmail.com

mailto:saijithendra.nalagatla@gmail.com
mailto:3kvmmece@gmail.com

III. THE SYSTEM TOPOLOGY

The general framework of the Laboratory
Intelligent Monitoring System is divided into three levels
from low to high which are ARM front-end machine and its
peripheral equipment, PC intelligent monitoring center and
remote client terminal.

A. Embedded front-end machine

Embedded front-end machine use Samsung's

S3C2440 ARM processor as the main controller, the
performance and frequency of which are suitable for real-
time video image capture and processing applications. The
system hardware architecture is shown in Figure 1.

QT BASICS

Qt [pronounced 'cute'] is a cross-platform
application framework that is widely used for developing
application software with a graphical user interface (GUI)
(in which cases Qt is classified as a widget toolkit), and
also used for developing non-GUI programs such as
command-line tools and consoles for servers. Qt is most
notably

Qt uses standard C++ but makes extensive use of
a special code generator (called the Meta Object Compiler,
or moc) together with several macros to enrich the
language. Qt can also be used in several other programming
languages via language bindings. It runs on the major
desktop platforms and some of the mobile platforms. It has
extensive internationalization support. Non-GUI features
include SQL database access, XML parsing, thread
management, network support, and a unified cross-platform
application programming interface (API) for file handling.

Distributed under the terms of the GNU Lesser
General Public License (among others), Qt is free and open
source software. All editions support many compilers,
including the GCC C++ compiler and the Visual Studio
suite.

Qt is developed by an open source project, the Qt
Project, involving developers as individuals and from firms
working to advance Qt, such as Nokia, Digia, and others.
Before the launch of the Qt Project, it was produced by
Nokia's Qt Development Frameworks division, which came
into being after Nokia's acquisition of the Norwegian
company Trolltech, the original producer of Qt. In February
2011 Nokia announced its decision to drop Symbian
technologies and base their future smart phones on
Microsoft platform instead. One month later Nokia
announced the sale of Qt's commercial licensing and
professional services to Digia, although Nokia was to
remain the main development force behind the framework
at that time. On 9 May, it was announced on the Qt Labs
website that the groundwork was being laid for the next
major version of Qt, with the expectation that Qt 5 would
be released in August 2012.

On August 9, 2012, Digia acquired Qt software
technologies from Nokia. About 125 Qt developers will be
transferred to Digia, with the immediate goal of bringing Qt
support to android, iOS and Windows 8 platforms.

Qt Creator IDE:
Qt Creator IDE is a tool for creating Qt

applications that eliminates the need for operating system
or device emulators. The tool has also been implemented
efficiently to minimise download size as well as processor
and disk space requirements. The Qt Creator IDE is easy to
install and the IDE enables developers to create Qt
applications quickly and easily.
Qt tools:

Qt is supplied with several command line and
graphical tools to simplify and speed up the development
process. Each tool is listed here with a link to its
documentation.

Ø Qt Designer: Create forms visually.
Ø Qt Assistant: Quickly find the help you need.
Ø Qt Linguist, lupdate, lrelease: Translate applications to

reach international markets.
Ø qmake: Create makefiles from simple platform-independent

project (.pro) files.
Ø Meta-Object Compiler (moc): Generate meta-object

information for QObject subclasses.
Ø User Interface Compiler (uic): Generate C++ code from

user interface files.
Ø Resource Compiler (rcc): Embed resources into Qt

applications during the build process.
Ø Configuring Qt (qtconfig): X11-based Qt configuration tool

with online help.
Ø Examples and Demos Launcher: A launcher for Qt's

Examples and Demonstration programs for Platforms.
Ø qt3to4 - The Qt 3 to 4 Porting Tool: A tool to assist in

porting applications from Qt 3 to Qt 4. (Please note: Code
ported from Qt 3 to Qt 4 will not be supported on Qt for
Symbian).

Ø QtDBus XML compiler (qdbusxml2cpp): A tool to convert
D-Bus interface descriptions to C++ source code.

Ø D-Bus Viewer: A tool for examining D-Bus objects and
messages.
Qt terms:
1. Widgets: UI components (buttons, message boxes,
application windows)
2. Layout Manager: Automatic positioning and resizing of
child widgets.
3. Signals and Slots: Inter-object communication.
4. Events: System events (mouse clicks, keyboard ...)
5. Actions: e.g., save action used in tool bar and menu.
Qt Architecture:

Ø Qt uses native styles to draw UI
Ø Widgets emulate exact look & feel can be adapted by the

developer
Ø Built on low level APIs of platform
Ø MFC, Motif, Layered toolkit with thin wrappers. Less

performance, less flexibility
Ø Cross-platform
Ø Single source for multiple platforms Only requires

recompilation

Advantage of Qt:

Ø Target multiple platforms from a single source
Ø Shorter development time – faster time to market
Ø Reduced maintenance expense
Ø Avoid OS-subgroups in development organization

http://en.wikipedia.org/wiki/Cross-platform
http://en.wikipedia.org/wiki/Application_framework
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Widget_toolkit
http://en.wikipedia.org/wiki/Command-line_tool
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Language_binding
http://en.wikipedia.org/wiki/Internationalization
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Thread_%28computer_science%29
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License
http://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License
http://en.wikipedia.org/wiki/Free_software
http://en.wikipedia.org/wiki/Open_source_software
http://en.wikipedia.org/wiki/Open_source_software
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/wiki/Microsoft_Visual_Studio
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Nokia
http://en.wikipedia.org/wiki/Digia
http://en.wikipedia.org/wiki/Qt_Development_Frameworks
http://en.wikipedia.org/wiki/Norway
http://en.wikipedia.org/wiki/Trolltech
http://en.wikipedia.org/wiki/Symbian
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Digia
http://en.wikipedia.org/wiki/Digia
http://qt.nokia.com/downloads/
http://doc.trolltech.com/4.4/designer-manual.html
http://doc.trolltech.com/4.4/assistant-manual.html
http://doc.trolltech.com/4.4/linguist-manual.html
http://doc.trolltech.com/4.4/qmake-manual.html
http://doc.trolltech.com/4.4/moc.html#moc
http://doc.trolltech.com/4.4/uic.html
http://doc.trolltech.com/4.4/rcc.html
http://doc.trolltech.com/4.4/qtconfig.html
http://doc.trolltech.com/4.4/qtdemo.html
http://doc.trolltech.com/4.4/qt3to4.html
http://doc.trolltech.com/4.4/qdbusxml2cpp.html
http://doc.trolltech.com/4.4/qdbusviewer.html

Ø Enjoy true platform independence
Ø Target a new platform in weeks, not months
Ø Rapidly respond to evolving market requirements
Ø Remain insulated from platform changes
Ø Qt is actively maintained and developed to support all new

mainstream OS variants
Ø Focus development efforts instead on value-adding

innovation
Ø Qt delivers real, lasting competitive advantage
Ø Qt increases the productivity of developers by making C++

programming faster, easier and more intuitive
Ø Qt development tools eliminate common bottlenecks in the

development process
Ø GUI Design & Layout - Qt Designer
Ø Translation/Localization - Qt Linguist
Ø Documentation - Qt Assistant
Ø Cross-platform build system – qmake
Ø Qt delivers true platform freedom – targeting a new

platform is measured in days or weeks, not months or years
Ø One source code base means less maintenance time and

expense – multiplying results of development efforts
Ø Full access to complete source code on all platforms

enables development teams to adapt and extend Qt to meet
their unique needs, expediting the development process.

III. THE DESIGN OF GUI AND DEVICE DRIVER
OF THE LAB ENVIRONMENT INTELLIGENT

MONITORING SYSTEM

The design of GUI for embedded systems is
different from that of traditional data computing class
software, which often handles mouse or keyboard events to
complete a specific calculation, while the former mostly
handle events caused by touch screen and other kinds of
external devices. Because the embedded systems is
resource-constrained, the design mode of the GUI of the
traditional PC ,the memory consumption of which is
relatively large and take up more CPU time, is not suitable
for embedded systems. The lab intelligent monitoring
system studied in this paper uses Qt / Embedded under
embedded Linux as its GUI development platform, which
can fully satisfy the restriction of embedded system
resources. The application development framework of Qt /
Embedded is shown in Figure 2.

As QT uses C + + as its programming language,
it can implement hybrid programming with linux-C. The
header files include both QT-API library and linux system
calls libraries. Write the linux system calls as parts of the
slots functions which can respond to specific signals in
order to achieve the combination of Qt / Embedded and
linux-C.

Of course, to achieve reading and writing of a
specific device file, there must be device drivers which
provide reading and writing operation interface functions.
Therefore, we need to complete the preparing, configuring
and modifying of the drivers of sensors, cameras and other
external expansion device of S3C2440 microprocessor.

The Laboratory Intelligent Monitoring System
uses QT to complete GUI on the ARM head-end machine

to achieve the graphical display of data collected by a
variety of sensors. This article focuses on elaborating the
design of the linux drivers of various types of sensors and
qtopia application in the system.

Figure 2. The application development framework of Qt /

Embedded

A. Initialization

In the Qt application, firstly a QApplication
object is created in main.cpp which is in charge of the main
settings and flow controlling of the graphical user interface.
Similarly, in the Qtopia a QPEApplication object is created
to handle and schedule the events from the system and
other source files, including the initialization and the end of
the application.

B. Create components

With the help of QT designer ,the programmer
can quickly develop relevant GUI components and adjust
the size and position, including functions such as
displaying the current temperature, humidity,
concentrations of carbon dioxide and harmful gases
concentration in the laboratory environment and showing
whether the infrared sensors open or not. And then define
the signals and slots functions, save it as Ui file. The final
GUI of lab environment intelligent monitoring system is
shown in Figure 3.

C. Event handling

First of all, device driver modules for sensors,
camera and so on need to be dynamically loaded into
embedded linux operating system kernel which runs on the
front-end machines ,providing interface functions of
initializing , reading and writing for linux device file so that
event handling based on the system time and key can be
accomplished in embedded GUI .

As to the display of the data collected by a
variety of sensors through the embedded GUI, QTimer
function can be called to automatically update the
environmental monitoring value in constant time interval.
The process of event handling of various types of sensors is
shown in Figure 3.

Figure 3 . The process of event handling of various types of

sensors

The statement QTimer timer creates an object
and then call start () method in the constructor to specify
the time-out period. When the timeout event occurs, all
kinds of data updating functions handleSensor () will be
automatically called.
void ILMS::ILMS()
{
connect(&timer,SIGNAL(timeout()),this,
SLOT(handleSensor ()));
timer.start(180*1000);
/ / the other parts of the constructor definition are not
listed
}
handleSensor ()
will update the current environmental monitoring data of
the sensors, which requires the driven interface functions of
sensors.

D. The design of Linux device driver for sensors

Various types of sensors have their own specific
device drivers due to the different working principles. Take

Digital temperature sensor as an example to elaborate the
design method of Linux device driver for sensors. Function
handleTemperature () mainly uses the digital temperature
sensor driver function read (), which is renamed form the
function BYTE DS18b20_read_byte (void) . static struct
file_operations s3c2440_18b20_fops =
{
. owner = THIS_MODULE,
. read = s3c2440_18b20_read,
};
The prototype of this function is DS18b20_read_byte,
providing a reading method for DS18b20 device file.
BYTE DS18b20_read_byte (void)
{
BYTE i = 0;
BYTE byte = 0;
for (i = 0; i < 8; i++)
{
s3c2440_gpio_cfgpin(DS18B20_PIN,
DS18B20_PIN_OUTP);
s3c2440_gpio_setpin(DS18B20_PIN, LOW);
udelay(1);
byte >>= 1;
s3c2440_gpio_setpin(DS18B20_PIN, HIGH);
s3c2440_gpio_cfgpin(DS18B20_PIN,
DS18B20_PIN_INP);
if(s3c2440_gpio_getpin(DS18B20_PIN)) byte |=
0x80;
udelay(60);
}
return byte;
}

The read () function returns the byte stream buf
which contains the LS byte and MS byte corresponding to
buf [0] and buf [1]. The value of former four bits of buf [0]
is 2-4 ~ 2-1.In the laboratory environment, the general
accuracy of temperature measurement can be negligible.
The former our bits of buf [1] are sign flags, while we just
use bit11 as the sign flag. Move buf [0] to the right four bits
and then add it with the value of buf [1] ,we will get the
current temperature of the laboratory environment.

In addition, system drivers also provide reset(),
write(), proc() functions for DS18B20 which is available
for the calls of other applications

IV SENSORS

 A sensor is a device that measures a physical
quantity and converts it into a signal which can be read by
an observer or by an instrument. They are used for various
purposes including measurement or information transfer.

An electronic sensor is any device that uses
electricity to sense a change in physical quantity, and then
through a voltage change, send a signal to a device that
captures this information. Some sensors measure properties
directly, other sensors measure properties indirectly, using
conversions or calculations to determine results. Sensors
are generally categorized by the type of phenomenon that
they measure, rather than the functionality of the sensor
itself.

There are many different things to measure --
heat, light, humidity, sound, level, weight etc. each of these
requires a different sensors. There are so many kinds of
sensors.

MECHANICAL SENSORS:

 Mechanical sensors measure a property through
mechanical means, although the measurement itself may be
collected electronically. An example of a mechanical
sensor is a strain gauge. The strain gauge measures the
physical deformation of a component by experiencing the
same strain as the component, yet the change in resistance
of the strain gauge is measured electrically. Other types of
mechanical sensors include:
Ø Pressure sensors
Ø Accelerometers
Ø Potentiometers
Ø Gas and fluid flow meters
Ø Humidity sensors

ELECTRICAL:

 Electrical sensors measure electric and magnetic
properties. An example of an electrical sensor is an
ohmmeter, which is used to measure electrical resistance
between two points in a circuit. An ohmmeter sends a fixed
voltage through one probe, and measures the returning
voltage through a second probe. The drop in voltage is
proportional to the resistance, as dictated by Ohm's Law.
Other electrical sensors include:

Ø Voltmeter/Ammeter
Ø Metal detector
Ø RADAR
Ø Magnetometer

THERMAL:

 Although all thermal sensors measure changes in
temperature, there are a variety of types of thermal sensors,
each with specific uses, temperature ranges, and accuracies.
Some types of thermal sensors include:

Ø Thermometers
Ø Thermocouples
Ø Thermistors
Ø Bi-metal thermometers

OPTICAL:

 Optical sensors detect the presence of light
waves. This could include light in the visible spectrum, or
outside the visible spectrum, in the case of infrared sensors.
Some types of optical sensors include:

Ø Photo detectors
Ø Infrared sensors
Ø Fiber optic sensors
Ø Interferometers

OTHER TYPES OF SENSORS:
There are many other types of sensors:

Ø Radiation sensors, including Geiger counters and
dosimeters

Ø Motion sensors, including radar guns ,Infrared
detectors and speedometers

Ø Acoustic, including sonar and seismometers

Ø Gyroscopes
Ø Microphones
Ø Video cameras
Ø Hall Effect probes (magnetic field)
Ø Remote control devices
Ø Photocells
 Sensors may be simple physical measurement

systems, or complex electronic devices requiring
sophisticated data acquisition systems. No matter the type
of sensor, input type, or output type, every sensor has
inherent characteristics that allow the user to select the
right sensor for the task at hand.

SENSOR CHARACTERISTICS:
Some sensor characteristics include:

Ø Input Range
Ø Output Range
Ø Accuracy
Ø Repeatability
Ø Resolution

INPUT RANGE:
 Input range is the maximum measurable range
that the sensor can accurately measure. For example, a
compression load cell may have an input range of 0 -
5000 pounds. The load cell cannot accurately measure
"negative", or tensile loads, or compressive loads
greater than 5000 pounds. Generally, quantities
outside of the input range can be measured, but
characteristics such as accuracy and repeatability may
be compromised when the input is outside of the
specified range.

OUTPUT RANGE:

Output range generally refers to electronic
sensors, and is the range of electrical output signal that the
sensor returns. However, the output range could be a
physical displacement, such as in a spring scale, or rotation,
such as in a clock-style analog thermometer. The output
range is related to the input range by the conversion
algorithm specific to the sensor type, and the algorithm
may include factors based on the calibration of the specific
sensor.

ACCURACY:

Accuracy actually refers to the amount of error,
or inaccuracy that may be present in a sensor. Accuracy can
be stated as a unit of measurement, such as +/- 5 pounds, or
as a percentage, such as 95%. In most cases, increased
accuracy results in an increased cost for a sensor.

REPEATABILITY:

Repeatability, as the name implies, refers to how
often a sensor under the same input conditions will return
the same value. If a sensor is designed to be used over and
over again, it is important that the output value is accurate
over every measurement cycle for the life of the sensor.
Repeatability is determined by calibration testing of the
sensor using known inputs.

RESOLUTION:
Resolution is the smallest unit of measurement

that the sensor can accurately measure. Some transducers
return output signals in discrete steps, and therefore the
resolution is easily defined. Resolution can be stated as a
unit of measurement or as a percentage. For electronic
sensors, resolution is also dictated by the resolution of the
signal conditioning hardware or software.

These qualities are common to all sensors, no
matter what characteristic is being measured. All of these
traits must be considered when selecting the right sensor
for the specific needs of a test.

V. RESULTS

VI. CONCLUSION

In the post-PC era, the embedded system technology
develops rapidly and the design of embedded GUI and the
linux device drivers are important and indispensable
components of it. This paper focuses on solving the issues
of poor real time, high cost, low precision and incapability
of determining whether the lab environment is in line with
the body’s health indicators in the laboratory management
of domestic institutions of higher learning. It develops a
laboratory intelligent monitoring system with S3C2440
microprocessor as its main controller, elaborating the
difficult points of the development of the GUI applications
based on Qt / Embedded and Linux drivers for various
types of sensors in the project. With a perfect support of the
embedded system technology, we believe that the
intelligent monitoring system will have better performance
and broader market prospect.

REFERENCES

[1] Samsung Electronics Co Ltd. Users' Manual S3C2440A V0.12
 [M] . March,2004.
[2] Yun Sin-quan, Lu Qiang, Qian Pei-del. One implementation of
 Linux application based on Qt / Embedded [J]. Computer
 Application and Software, 2006,23 (2): 105-107.
[3] Trolltech. Online Reference Documentation [EB / OL].
 Http://doc. Trolltech. Com /.
[4] Chen Kun, Chen Yun-qiu, Liu Xin. Application design based
 on Qt / Embedded and embedded Linux [J]. Computer and
 Digital Engineering, 2009,37 (1): 156-161

Author introduction: Liu Yang, male, born in Jinzhou
,Hubei province. He comes from Software College of
Northeastern University, the main research direction
is embedded systems.
Acknowledgement: National Ministry of Education
College Students Innovative Experiment funded
projects (090164)

N.Sai Jithendra did
B.Tech in Electrical and
Electronics Engineering from
JNTU Kakinada and pursuing
M.Tech in
Embedded systems from Holy
Mary institute of Technology
and science, JNTU Hyderabad.
His interested areas are
Embedded systems.

http://doc/

 D.Aruna Kumari is Completed
M.Tech in ECE, JNTU Kakinada.
B. Tech in Electronics and
Communication Engineering from
Bapatla Engineering college,
Nagarjuna University, Guntur,
Currently working as
Asst.Professor in the ECE
Department at Holy Mary Institute
of Technology and Science
(College of Engineering),
Hyderabad. Her interested areas are
EMTL, communication, Antinas,
Microwaves.

	Qt Creator IDE:
	Qt tools:
	Qt terms:
	Qt Architecture:
	ELECTRICAL:
	THERMAL:
	OPTICAL:
	OTHER TYPES OF SENSORS:
	SENSOR CHARACTERISTICS:
	OUTPUT RANGE:
	ACCURACY:
	RESOLUTION:

