Speech enhancement by a Kalman filter based smoother in white and colored noise

Srilakshmi Garaga, O.Sudhakar

Abstract Since speech is non-stationary, it is common practice to segment the speech into short overlapped frames and assume the signal to be stationary with in each frame. This is known as quasi stationary assumption. The main idea in this project is to recover the clean speech signal from a sample corrupted with background noise through a telephone conversation. To achieve goal to estimate the speech spectrum using LP method and using SWLP, an improved algorithm with this method, choosing correctly the parameters can obtain an improved robustness against the background noise. After this, the idea is to use the Kalman filtering as a tool to estimate the future clean samples from the first one in an iterative way.

This paper presents a new approach to speech enhancement based on Kalman algorithms. This approach differs from the single-channel speech enhancement. However, when carrying out Kalman smoothing, the computational cost and the data storage requirements are two specific problems. In this paper a filter-based smoother is proposed and used in the framework of speech enhancement. The algorithm is evaluated by considering a speech signal embedded in a white Gaussian noise. Simulation Results show that the proposed algorithm provides a higher improvement of signal to noise ratio (SNR) than the Kalman filtering.

Keywords Speech enhancement, Kalman filter, LP, SWLP, white noise, colored noise.

1 INTRODUCTION

The objective of speech enhancement is to improve the quality of a speech signal, often degraded by some type of distortion (for example communication channel distortion, additive noise, convolution filtering operation, etc.). The difficulty from the background noise is not useful to keep the communication if the noise of the subway, train, car, etc., prevents us from understanding.

That is the goal of this paper: to eliminate the maximum background noise keeping the quality of the voice to transmit, because there exists a limit where the voice stops to sound like human voice, it loses the nuances and starts to seem like something artificial. For this purpose we use the Kalman filter. For the experimental part, we use the database form sentences recorded in English, which have been filtered by IRS filters to simulate the telephone handsets and later, it has been added the background noise. Then develop this in two environments, with white noise and with colored noise; the latter is closer to the real life noise. For each scenario, two methods will be used to model the signals: Linear Predictive Coding (LPC) and Stabilized weighted linear prediction (SWLP). Both predict the coefficients of the signals.

Keywords

- **Speech enhancement**, Kalman filter, LP, SWLP, white noise, colored noise.

Filtering algorithms are time-domain methods that attempt to either remove the noise component (Wiener filtering) or estimate the noise and speech components by a filtering approach (Kalman filtering). There is an important algorithm for speech enhancement which
belongs to the group of parametric methods where the speech signal is modeled as an autoregressive process embedded in Gaussian noise.

Speech enhancement algorithms belonging to this category consist of two steps:

- Estimation of the AR coefficients and noise variances.
- Application of the Kalman filtering using the estimated parameters to estimate the clean speech from a sample of the noisy signal.

2 KALMAN FILTER FOR SPEECH ENHANCEMENT

2.1 Accurate estimation of LPC and SWLP

Linear prediction is one of the most powerful tools used, where a signal y_n is the output of a system considering the unknown signal x_n as the input with the relation,

$$ y_n = -\sum_{k=1}^{p} a_k \cdot y_{n-k} + G \cdot \sum_{i=0}^{M} b_i \cdot x_{n-i} + d \cdot c = 1 $$

Where G are the parameters of a hypothesized system.

The estimation of model parameters can be derived in the time domain and in the frequency domain. In general, input signal predict it, x_n as a linear weight combination of the past samples,

$$ \hat{y}_n = -\sum_{k=1}^{p} a_k \cdot y_{n-k} $$

Where a_k are the predictor coefficients, p is the model order and the minus sign is for convenience. The error with this method.

$$ e_n = y_n - \hat{y}_n = y_n + \sum_{k=1}^{p} a_k \cdot y_{n-k} = \sum_{k=1}^{p} a_k \cdot y_{n-k} $$

Where y_n is the original signal, $a_0=1$ and e_n is called residual. This measures the quality of the predictor. If denote the total squared error by E, where

$$ E = \sum_{n} e_n^2 = \sum_{n} \left(y_n + \sum_{k=1}^{p} a_k \cdot y_{n-k} \right)^2 $$

Then, to minimize E:

This method is called method of least squares and the parameters a_k are calculated as a result of the minimization of the mean or total squared error with respect to each of the parameters (it is called autocorrelation criterion too). With the auto-correlation method,

$$ \sum_{k=1}^{p} a_k \cdot R(i-k) = -R(i), \quad 1 \leq i \leq p $$

Where,

$$ R(i) = \sum_{n} y_n \cdot y_{n-i} $$

Is the auto-correlation function of y_n. Then, observe that: $R(-i) = R(i)$. Like the coefficients $R(i-k)$ form an autocorrelation matrix. The coefficient vector $a = (a0, a1, ..., ap)^T$, of a FIR predictor with order p, which minimizes the prediction error energy. The corresponding all-pole filter is obtained as $H(z) = 1 / A(z)$, where $A(z)$ is the z-transform of a. To achieve this, it exists a formula to modify the weight function of WLP and, in this way, to reach the stability of the all-poles filter.

All of this can be carried out by changing the elements of the secondary diagonal of the B matrix:

$$ B_{i,i+1} = \begin{cases} \sqrt{w_i / w_{i+1}}, & \text{if } w_i \leq w_{i+1} \\ 1, & \text{if } w_i > w_{i+1} \end{cases} $$

From now on, the WLP method calculated using the B matrix, is called stabilized weighted linear prediction (SWLP), where the stability of the all poles filter is guaranteed. The main concept in WLP, is the time domain weight function. Choosing an appropriate waveform, one can temporally emphasize or attenuate the weight of the residual energy prior to the optimization of the filter parameters. The weight function was chosen basing on the short-time energy (STE),

$$ w_n = \sum_{i=0}^{M-1} x_n^2 $$

Where M is the length of the window.

2.2 The process to be estimated:

The Kalman filter has the goal of solving the general problem of estimate R_m of a process controlled in discrete time, which is the state X dominated by a linear equation in stochastic difference in the following way:

$$ X_n = A \cdot X_{n-1} + \kappa \chi $$

With a measure $Y \in R^n$, that is:

$$ Y_n = C \cdot X_n + \kappa \chi $$

The random variables κ and χ represent the process and
the measure error, respectively. It is assumed they are independent of each other, and are white noise variables with normal probability distribution:

\[p(w) = N(0, R_w) \]
\[p(v) = N(0, R_v) \]

In practice, the covariance matrix of the process’s perturbation, \(R_w \), and the measure’s perturbation, \(R_v \), could change in time, but for simplicity, it is assumed they are constants.

2.3 The Kalman filter and the state-space notation

The Kalman filter is the main algorithm to estimate dynamic systems specified with the state-space model. Actually, the state-space models and the Kalman filter models are often used as synonymous. The estimation and control of the problems of this methodology are based on stochastic models, assuming errors in the measures. The performance of the state-space model for a linear system captures a \(y_n \) vector with \(n \times 1 \) order associated to an unknown \(x_n \) vector with \(m \times 1 \) order, known as state vector.

In speech processing, I assume the case with a signal received by a single microphone and additive noise. Let the signal measured by the microphone be given by:

\[y_n = x_n + v_n \]

Where \(y_n \) is the observed signal, \(x_n \) is the desired input and \(v_n \) is the additive background noise (zero-mean noise). Furthermore, like \(x_n \) is modeled as autoregressive, assume the standard LPC modeling for the speech signal over an analysis frame:

\[x_n = -\sum_{k=1}^{p} a_k \cdot x_{n-k} + w_n = -a_x \ast x_{n-1} + w_n \]

On the other hand, the last equation can be reformulated in a state space presentation with the state transition matrix or companion matrix:

\[
A_{n+1} = \begin{bmatrix}
-a_1 & -a_2 & \cdots & -a_{m-1} & -a_m \\
1 & 0 & \cdots & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots \\
0 & \cdots & \cdots & \cdots & \cdots
\end{bmatrix}
\]

Then, write the state-space form:

\[x_{n+1} = A_{n+1} \cdot x_n + u \cdot w_{n+1} \]
\[y_n = C \cdot x_n + v_n \]

Where \(C \) is a matrix of the system, \(w_{n+1} \) is the noise indoor and \(v_n \) is the noise outdoor.

The first of these equations is known as process equation and the second one as measurement equation. The first equation shows the relation among previous states and futures states, while the second one gives us the correspondence between the internal state of the system and how it can be observed [10]. These equations are useful for most of the linear estimation methods, like the Kalman filter described above.

2.4 First option: assuming white noise:

First consider white noise; the coefficients of the noise added signal are calculated through LPC method and use this estimation for all the process, assuming they don’t change.

2.5 Second option: assuming colored noise

The only difference in the code with this change is that the coefficients of the noise added signal change with the time. For that reason, inside the loop, each time calculate the coefficients of the original signal with noise, then calculate the coefficients of the noise signal too; here LPC method is used for all the tries.

3. RESULTS

Fig. 3.a Input Signal
Fig. 3.b Noisy Signal
Fig. 3.c Output Signal
Fig. 3.d Input and Output Signal
4. CONCLUSION

The Kaman Filter has been widely used in many areas from tracking to speech enhancement. Since the speech signal is often assumed stationary during an analysed frame (20-30 ms), the Kalman smoother can be carried out and provides better estimates of the state since it is based on a higher number of observations. However, the enormous storage requirements of the Kalman smoother confine its applications in practice. In this paper, our purpose was to present an alternative to the Kalman smoother, filter-based smoother (FBS), which does not require such a storage space for the vectors and matrices during the Kalman filtering process. The evaluation of the FBS-based speech enhancement algorithm. The results show that the proposed FBS based algorithm can provide a higher SNR improvement than the KF based algorithm.

REFERENCES

