Some approximation results on modified positive linear operators

Dr. R. P. Pathak and Shiv Kumar Sahoo

ABSTRACT: Recently Deo N.et.al. (Appl. Maths. Compt., 201(2008), 604-612.) introduced a new Bernstein type special operators. Motivated by Deo N.et.al., in this paper we introduce special class of positive linear operators and shall study some approximation results on it.

1. INTRODUCTION

Recently Deo N.et.al. [1] introduced new Bernstein type special operators \(\{V_nf\} \) defined as,

\[
(V_nf)(x) = \sum_{k=0}^{n} p_{n,k}(x)f \left(\frac{k}{n} \right) \quad \ldots \ldots \quad (1.1)
\]

where \(p_{n,k}(x) = \left(1 + \frac{1}{n} \right)^n \binom{n}{k} x^k \left(\frac{n}{n+1} - x \right)^{n-k} ; \)

for \(0 \leq x \leq \frac{n}{n+1} \)

Again Deo N.et.al. [1] gave the integral modification of the operators (1.1) which are defined as,

\[
(b_nf)(x) = n \left(1 + \frac{1}{n} \right)^2 \sum_{k=0}^{n} p_{n,k}(x) \int_{0}^{\frac{n}{n+1}} p_{n,k}(t) f(t)dt \quad \ldots \ldots \quad (1.2)
\]

and prove some approximation results on the operators (1.2).

Singh S.P. [4] studied some approximation results on a sequence of Szász type operators defined as,

\[
(S_nf)(t) = \sum_{k=0}^{n} b_{n,k}(t) f \left(x + \frac{k}{n} \right) \quad \ldots \ldots \quad (1.3)
\]

where \(b_{n,k}(t) = e^{-nt} \frac{(nt)^k}{k!} ; \quad x \in [0,\infty) \) is fixed.

which map the space of bounded continuous functions \(C_0[0,\infty) \) into itself following [3].

Kasana H.S. et. el. [2] obtained a sequence of modified Szász operators for integrable function on \([0,\infty) \) defined as,

\[
(M_nf)(t) = M_{n,f}(f(y) ; t) = n \sum_{k=0}^{\infty} b_{n,k}(t) \int_{0}^{\infty} b_{n,k}(y) f(x+y)dy \quad \ldots \ldots \quad (1.4)
\]

where \(t,x \in [0,\infty) \) and \(x \) is fixed.

Motivated by Deo N.et.al.[1] we introduce a sequence of positive linear operators \(\{B_{n,f}\} \) which are defined as,

\[
(B_{n,f})(x) = n \left(1 + \frac{1}{n} \right)^2 \sum_{k=0}^{n} \frac{(n+p)^k x^k}{k!} \int_{0}^{\frac{n}{n+1}} p_{n,k}(t) f(t)dt
\]

\(p > 0 \) and \(x \in [0,\frac{n}{n+1}] \)

we shall study some approximation results on the operators (1.5).

Again following Kasana H.S. et. el. [2] we introduce a sequence of positive linear operators \(\{B_{n,f}\} \) which are defined as,

\[
(B_{n,f})(t) = n \left(1 + \frac{1}{n} \right)^2 e^{-(n+p)t} \sum_{k=0}^{\infty} \frac{(n+p)^k t^k}{k!} \int_{0}^{\frac{n}{n+1}} p_{n,k}(y) f(x+y)dy
\]

\(x \in [0,\frac{n}{n+1}] \) and \(x \) is fixed.

we shall study some approximation results on the operators (1.6).

2. BASIC RESULTS-I

In order to prove our main result, the following basic results are needed.

1. \[e^{-(n+p)x} \sum_{k=0}^{\infty} \frac{(n+p)^k x^k}{k!} = (n+p)x \quad \ldots \ldots (2.1) \]
2. \[e^{-(n+p)x} \sum_{k=0}^{\infty} \frac{(n+p)^k x^k}{k!} k^2 = (n+p)^2 x^2 + (n+p)x \quad \ldots \ldots (2.2) \]
3. \(e^{-(n+p)x} \sum_{k=0}^{n} \frac{(n+p)^k x^k}{k!} = (n+p)^3 x^3 + 3(n+p)^2 x^2 + (n+p) \) ...(2.3)

4. \(e^{-(n+p)x} \sum_{k=0}^{n} \frac{(n+p)^k x^k}{k!} k^4 = (n+p)^4 x^4 + 6(n+p) \) \(3x^3 + 7(n+p)2x^2 + (n+p)x \) ...(2.4)

PROOF OF BASIC RESULTS-I

We know that

\[e^{(n+p)x} = \sum_{k=0}^{\infty} \frac{(n+p)^k x^k}{k!} \] ...

Differentiating with respect to \(x \), we get

\[(n+p)e^{(n+p)x} = \sum_{k=0}^{\infty} \frac{(n+p)^k x^k}{k!} k \]

Multiplying \(x \) both sides, we get

\[(n+p)xe^{(n+p)x} = \sum_{k=0}^{\infty} \frac{(n+p)^k x^k}{k!} k \] ...

\[(n+p)x = e^{-(n+p)x} \sum_{k=0}^{\infty} \frac{(n+p)^k x^k}{k!} k \]

This completes the proof of (2.1).

Again differentiating (2.6) with respect to \(x \), we get

\[(n+p)^2 xe^{(n+p)x} + (n+p)e^{(n+p)x} = \sum_{k=0}^{\infty} \frac{(n+p)^k x^k}{k!} k^2 \]

Multiplying \(x \) both sides, we get

\[(n+p)^2 x^2 e^{(n+p)x} + (n+p)x e^{(n+p)x} = \sum_{k=0}^{\infty} \frac{(n+p)^k x^k}{k!} k^2 \]

\[[(n+p)^2 x^2 + (n+p)x] e^{(n+p)x} = \sum_{k=0}^{\infty} \frac{(n+p)^k x^k}{k!} k^2 \]

\[[(n+p)^2 x^2 + (n+p)x] = e^{-(n+p)x} \sum_{k=0}^{\infty} \frac{(n+p)^k x^k}{k!} k^2 \]

This completes the proof of (2.2).

In the same way after differentiations and calculations, we get required results (2.3) and (2.4).

3. **BASIC RESULTS-II**

1. \((B_n 1)(x) = 1 \) ...

2. \((B_n t)^2(x) \to x \) as \(n \to \infty \) ...

3. \((B_n t)^2(x) = x^2 \) as \(n \to \infty \) ...

4. \((B_n t)^2(x) = n^3[(n+p)x^3 + (n+p)x^2 + 18(n+p)x + 6] \]

\[\frac{(n+1)^3}{(n+2)(n+3)(n+4)} \] ...

5. \((B_n t^4)(x) = \frac{n^4[(n+p)x^4 + 16(n+p)x^3 + 72(n+p)x^2 + 96(n+p)x + 24]}{(n+1)^4(n+2)(n+3)(n+5)} \) ...

6. \((B_n t^4)(x) = \frac{n^4[(n+p)x^4 + 16(n+p)x^3 + 72(n+p)x^2 + 96(n+p)x + 24]}{(n+1)^4(n+2)(n+3)(n+5)} \) ...

7. \((B_n t^2)(x) = \frac{n^2(2n^2 + n^2)(n^2 + 1)x^2 + 4(n^2 - 1)x^2 + 1 - n[(17 - 12p)x^2]x^2 + 1}{(n+1)^2(n+2)(n+3)} \) ...

8. \((B_n t^2)(x) = \frac{n^2(2n^2 + n^2)(n^2 + 1)x^2 + 4(n^2 - 1)x^2 + 1 - n[(17 - 12p)x^2]x^2 + 1}{(n+1)^2(n+2)(n+3)} \) ...

9. \((B_n t^2)(x) = \frac{n^2(2n^2 + n^2)(n^2 + 1)x^2 + 4(n^2 - 1)x^2 + 1 - n[(17 - 12p)x^2]x^2 + 1}{(n+1)^2(n+2)(n+3)} \) ...

Proof of Basic Results-II.

By putting \(f(t) = 1 \) in equation (1.5), we get

\[(B_n 1)(x) = n(1 + \frac{1}{n})^2 e^{-(n+p)x} \sum_{k=0}^{\infty} \frac{(n+p)^k x^k}{k!} \]

\[\int_0^n \left(\frac{n+1}{n} \right)^n \left(\frac{n}{n+1-t} \right)^{n-k} 1 \]

\[= n(1 + \frac{1}{n})^2 e^{-(n+p)x} \sum_{k=0}^{\infty} \frac{(n+p)^k x^k}{k!} \frac{1}{n} \frac{n}{n+1}^2 \]

\[= e^{-(n+p)x} \sum_{k=0}^{\infty} \frac{(n+p)^k x^k}{k!} = 1. \]

This completes the proof of (2.8).

By putting \(f(t) = t \) in equation (1.5), we get

\[(B_n t)(x) = n(1 + \frac{1}{n})^2 e^{-(n+p)x} \sum_{k=0}^{\infty} \frac{(n+p)^k x^k}{k!} \]

\[\int_0^n \left(\frac{n+1}{n} \right)^n \left(\frac{n}{n+1-t} \right)^{n-k} t \]

\[= n(1 + \frac{1}{n})^2 e^{-(n+p)x} \sum_{k=0}^{\infty} \frac{(n+p)^k x^k}{k!} \frac{k}{n+2} \frac{n}{n+1}^3 \]

\[= \frac{n}{(n+1)(n+2)} \left\{ e^{-(n+p)x} \sum_{k=0}^{\infty} \frac{(n+p)^k x^k}{k!} + e^{-(n+p)x} \sum_{k=0}^{\infty} \frac{(n+p)^k x^k}{k!} \right\} \]

\[= \frac{n}{(n+1)(n+2)} [(n+p)x + 1] \]

\[= \frac{(n+p)x + n}{(n+1)(n+2)} \]

\((B_n t)(x) \to x \) as \(n \to \infty \).
This completes the proof of (2.9).

By putting \(f(t) = t^2 \) in equation (1.5), we get

\[
(B_n^2)(x) = n \left(1 + \frac{1}{n} \right)^2 e^{-\left(\frac{n+1}{n}\right)x} \sum_{k=0}^{\infty} \frac{(n+1)^k x^k}{k!} \int_0^{\frac{n}{n+1}} \left(\frac{n}{n+1} - \frac{n}{n+1} \right)^{n-k} t^{n-k} dt
\]

\[
= n \left(1 + \frac{1}{n} \right)^2 e^{-\left(\frac{n+1}{n}\right)x} \sum_{k=0}^{\infty} \frac{(n+1)^k x^k}{k!} \left(\frac{n}{n+1} \right)^k \left(\frac{n}{n+1} \right) \frac{n}{n+1} \frac{1}{n+1} \]

\[
= \frac{n^2}{(n+1)(n+2)(n+3)} \left\{ e^{-\left(\frac{n+1}{n}\right)x} \sum_{k=0}^{\infty} \frac{(n+1)^k x^k}{k!} \right\}
\]

\[
+ e^{-\left(\frac{n+1}{n}\right)x} \sum_{k=0}^{\infty} \frac{(n+1)^k x^k}{k!} \frac{(n+1)^k}{3k} + e^{-\left(\frac{n+1}{n}\right)x} \sum_{k=0}^{\infty} \frac{(n+1)^k x^k}{k!} \frac{(n+1)^k}{2}
\]

\[
= \frac{n^2}{(n+1)^2(n+2)(n+3)} x^2 + 4(n+1)^2 x + 2
\]

\[
(B_n^2)(x) = x^2 \quad \text{as} \quad n \to \infty.
\]

This completes the proof of (2.10).

In the same way by taking \(f(t) = t^4 \) & \(f(t) = t^4 \) respectively in (1.5) and after little calculations we get required results (2.11) to (2.16).

This completes the proof.

4. MAIN RESULTS

In this section we shall give our main result.

Reference Theorem : Let \(f \) be the integrable and bounded in the interval \([0, \frac{n}{n+1}] \) and let if \(f'' \) exists at a point \(x \) in \([0, \frac{n}{n+1}] \), then one gets that

\[
\lim_{n \to \infty} n[(B_n^2f)(x) - f(x)] = (1 + (p - 3)x)f'(x) + \frac{x(2 - x)}{2} f''(x).
\]

where \(\{B_n^2f\} \) are defined in (1.5).

Theorem : Let \(f \) be the integrable and bounded in the interval \([0, \frac{n}{n+1}] \) and let if \(f'' \) exists at a point \(x \) in \([0, \frac{n}{n+1}] \), then one gets that

\[
\lim_{n \to \infty} n[(B_n^2f)(t) - f(x + t)] = (1 + (p - 3)t)f'(x + t) + \frac{t(2 - t)}{2} f''(x + t)
\]

where \(\{B_n^2f\} \) are defined in (1.6).

Proof : Since \(f'' \) exists at a point \(x + t \) in \([0, \frac{n}{n+1}] \), then by using Taylor’s expansion, we write

\[
f(x + y) = f(x + t + y - t) = f(x + t) + (y - t)f'(x + t) + \frac{(y - t)^2}{2} f''(x + t) + (y - t)^2 \lambda(y - t)
\]

where \(\lambda(y - t) \to 0 \) as \(y \to t \).

Now for each \(\epsilon > 0 \), there corresponds \(\delta > 0 \) such that

\[
|\lambda(y - t)| \leq \epsilon \quad \text{whenever} \quad |y - t| \leq \delta.
\]

Again for \(|y - t| > \delta \), then there exist a positive number \(M \) such that

\[
|\lambda(y - t)| \leq M \leq \frac{M(y - t)^2}{\delta^2}.
\]

Thus for all \(y \) and \(t \in [0, \frac{n}{n+1}] \), we get

\[
|\lambda(y - t)| \leq \epsilon + M \frac{(y - t)^2}{\delta^2}
\]

Applying \(\{B_n^2f\} \) on (3.6), we get

\[
(B_n^2f)(t) = f(x + t) + \frac{f'(x + t)}{2} (B_n^2f)(t) + \frac{f''(x + t)}{2} (B_n^2f)(t) + \frac{f'''(x + t)}{3} (B_n^2f)(t)
\]

\[
+ (B_n^2f)(y - t) \lambda(y - t) + \frac{(y - t)^2}{(n + 1)} (B_n^2f)(y - t) + \frac{(y - t)^3}{(n + 2)} (B_n^2f)(y - t)
\]

\[
= f(x + t) + f'(x + t) \left[\frac{n(1 + (p - 3)t) - 2t}{(n + 1)} \right]
\]

\[
+ f''(x + t) \left[\frac{n[1 + (p - 3)t] - 2t}{(n + 1)(n + 2)} \right]
\]
Multiplying \(n \) both sides, we get
\[
|nR_n(y,t)| \leq \varepsilon + \frac{M}{n^{1/2}} a\left(\frac{1}{n}\right)
\]
\[
\leq \varepsilon + M \left(\frac{1}{\sqrt{n}}\right).
\]
Since \(\varepsilon \) is arbitrary and small, we get
\[
|nR_n(y,t)| \to 0 \quad \text{as} \quad n \to \infty.
\]
Thus
\[
\lim_{n \to \infty} n\left[(B_{n,x}f)(t) - f(x + t)\right] = (1 + (p - 3)t)\, f'(x + t) + \frac{t(2 - t)}{2} \, f''(x + t).
\]
This completes the proof.

5. ACKNOWLEDGMENT
The authors are thankful to Director of National Institute of Technology, Raipur (C.G.) for encouragement.

6. REFERENCES

G.E. Road, Raipur -492010 (C.G.) India.
e-mail id: maths10sks@gmail.com.
r.p.pathak8@gmail.com.
(C.G.) India.
e-mail id: maths10sks@gmail.com.
r.p.pathak8@gmail.com.