Simultaneous Measuring of Serum Lycopene and Beta-Carotene Using High Performance Liquid Chromatography

Mahshid Afghan HajiAbbasi
1Medical Doctor (MD), Zanjan University of Medical Sciences, Zanjan, Iran

Abstract—Lycopene and beta-carotene are carotenoids with high antioxidant property, which are basically entered to the body through vegetable and fruit. Measuring the serum level of carotenoids is used to evaluate anti oxidant condition of body and to determine validity of questionnaires of studying vegetables and fruits consumptions. The current study aims to set up a valid, relatively fast and cheap laboratory method based on high performance chromatography to measure serum level of lycopene and beta-carotene. In the current study, after examining various conditions of chromatography, proteins of serum were firstly precipitated by ethanol and then, lycopene and beta-carotene were extracted by hexane. Organic phase was evaporated at 40º C under nitrogen gas and the remained article was solved in a combination of mobile phase (methanol: acetonitrile: tetrahydrofuran, volumetric ratio 50:45:5, containing 0.01 percent of butylated hydroxyl toluene) and diethyl ether (volumetric ratio 2:1) and 20 µL of it was injected to Novopack C18 column. Retention times of lycopene and beta-carotene at the flow rate of 1.5 mL/min and wave length of 472 nm were measured as 5.1 and 8.6 min, respectively, and total time of chromatography was measured as 11 min. Mean and standard deviation of recovery percent of lycopene and beta-carotene in numerous tests were obtained as 95.5±7.8% and 95.2±7%, respectively. Intra- and inter-assay variations for lycopene were 1.6% and 5.75%, respectively, and for beta-carotene were 3 and 3.5%, respectively. Quality control tests were indicated that this method is of high sensitivity and accuracy. While low time consuming and low cost of the test makes it a suitable test for research purposes, especially population studies, at the same time, this method also has some limitations similar to any laboratory method. For example, it is not clear that how many analytes can be simultaneously measured by this method. Clarification of this problem needs to more studies.

Index Terms—HPLC, Lycopene, Beta-Carotene, Serum, Chromatography, Anti Oxidant

1 INTRODUCTION

Lycopene is the natural pigment of tomato and its by-products. It is not provitamin A but is a strong anti oxidant [1-14]. The anti oxidant activity of lycopene which has been shown in some experimental [15-27] and human [28, 29] studies, seemingly has a synergistic effect with vitamin E [30]. Beta-carotene, opposite to lycopene, is one of the carotenoid provitamins A which has anti oxidant properties [31, 32]. In some studies, conservative effects of high serum level of beta-carotene against cardiovascular diseases have been reported [33-43] but in some other studies, it has been not confirmed [44-57].

At the same time, the anti cancer effects of carotenoids including lycopene and beta-carotene have been shown [58-60]. In most of these studies, measuring the concentration of carotenoids in blood is used to evaluate anti oxidant situation or its relationship with diseases. At the other hand, measuring the serum level of carotenoids has been used to evaluate the validity of questionnaire used to assess vegetable and fruit consumption [61-73]. Hence, having a suitable, valid and relatively fast method for measuring blood levels of carotenoids, as a research tool is completely necessary in many nutrition studies on oxidative stress and its relationship with diseases or validity of questionnaires of assessment of consumption [74-95]. In the current study, the simultaneous measuring of serum level of two most abundant food carotenoids, beta-carotene and lycopene, using high performance liquid chromatography (HPLC) was set up and then, numerous quality control tests were performed on it. The results of these tests were indicated relatively high accuracy and validity of this method.

2 FUNDAMENTALS

To set up the method, a pool serum sample was used. Firstly, proteins of serum were precipitated by ethanol and then, lycopene and beta-carotene were extracted by hexane. Organic phase was evaporated at 40º C under nitrogen gas, and the remained article was solved in a combination of mobile phase and diethyl ether (volumetric ratio 2:1) and it was injected to column.

3 MATERIALS

Methanol, ethanol, n-hexane, butylated hydroxyl toluene (BHT), acetonitrile and tetrahydrofuran, all with purity degree HPLC (Romil, UK), diethyl ether (BDH, India), standard lycopene (Sigma Aldrich, Cat.No. L9876), and standard beta-carotene (Fluka, Cat.No. 22040).

• "Mahshid Afghan HajiAbbasi, Corresponding Author, Medical Doctor (MD), Zanjan University of Medical Sciences, Zanjan, Iran."
4 APPARATUSES

HPLC apparatus equipped with ultraviolet detector UV730D (all from Young Lin, South Korea), Novopack C18 (Waters, USA) and printer.

5 PREPARATION OF STANDARD SOLUTIONS

Various standards of lycopene (6, 15, 30, 60, 120 and 150 micrograms per deciliter) and beta-carotene (10, 25, 50, 100, 200 and 250 micrograms per deciliter) in mobile phase were prepared.

6 SAMPLE PREPARATION

To precipitate proteins, 1000 µL of ethanol was added to 500 µL of serum sample and was mixed for 20 seconds with electrical mixer. Then, 1000 µL of hexane was added to it and was mixed for 60 seconds (extraction stage). The upper phase was transferred to an injection vial. The extraction stage was then performed again. Organic phase of hexane was evaporated at 40°C under flow of nitrogen gas and the obtained precipitant was added to mobile phase containing diethyl ether (volumetric ratio 2:1) so that its volume was became 500 µL. Then, this sample was injected into column.

7 CHROMATOGRAPHY CONDITION

Column, 4 µm, Novo Pack C18 20 cm, 1.5 mL/min flow rate, 1350 psi pressure, mobile phase consists of methanol: acetonitrile: tetrahydrofuran (v/v/v 50:45:5) containing 0.01 percent of BHT, volume of injection sample loop: 20 µL, detector wavelength: 472 nm. All stages of test were performed at room temperature. Concentrations of samples were measured using Autochrom 2000 software.

8 QUALITY CONTROL TESTS

To determine accuracy and precision of the method, determining range of linearity, detection limit, recovery percent and its repeatability in one day and sequential days were used.

(a) Range of linearity: Standard curves were prepared for lycopene with concentrations of 6, 15, 30, 60, 120 and 150 micrograms per deciliter and for beta-carotene with concentrations of 10, 25, 50, 100, 200 and 250 micrograms per deciliter.

(b) Detection limit: Detection limit was determined by sequential attenuating the lowest concentration used for preparing standard curve (6 and 10 micrograms per deciliter) and mobile phase of acetonitrile: methanol (volumetric ratio 50:50) with flow rate of 1.5 mL/min. However, they were reported range of linearity and recovery percent as 3-200 µg/dL and 97%, respectively. The advantages of this method were using intra standard of ethyl-beta-apo-8'-carotenate, relatively suitable retention time (11 and 5 min for lycopene and intra standard, respectively) and relatively high accuracy (1.8 and 31 % for intra- and inter-assay variations, respectively). However, in this method, in opposite of the current study, only one carotenoid was measured.

In another interesting study, researchers were determined blood concentration of 51 carotenoids (including lycopene and beta-carotene) in various times using gradient method and various concentrations of methanol and chloride methylene. Although this study is very interesting from research point of view, there is not necessary in most of nutrition studies to measure all of these carotenoids and at the same time, test will...
be very long and time consuming (more than one hour) due to high number of measured analytes and hence, the number of examined samples per day will be dramatically reduced. However, it is possible to test, averagely, 15-20 samples per day, using the method presented in the current study.

To simultaneous measure of alpha tocopherol, retinol and 5 carotenoids (including beta-carotene and lycopene) in human serum using HPLC, French researchers were used similar compounds but with different ratio of materials for mobile phase (methanol: acetonitrile: THF, with volumetric ratio of 75:20:5), and for detecting analytes, they were used photodiode array (PDA) with 290, 325 and 430 nanometers wavelength instead of ordinary ultraviolet detector. In this manner, they were performed chromatography using isocratic method during 20 min. It is interesting to note that in this study, recovery percent of carotenoids were higher than 85% and intra-assay variations of lycopene was 9.5%, even with using intra standard and adding anti oxidant to sample during extraction with hexane. The presented method in the current study is of more simplicity, higher recovery and very lower intra-assay variations than the method used by French researchers, which indicates its relatively high accuracy.

Although more advance techniques, such as mass spectrometry, have been used to measure serum carotenoids, specially beta-carotene and lycopene, higher accuracy did not reported in most of these studies than cheaper methods. For example, in an investigation to measure lycopene, serum alpha- and beta-carotene using HPLC by complex technique of atmospheric pressure chemical ionization mass spectrometry (APCI-MS) and with mobile phase of methanol: acetonitrile (volumetric ratio 70:30), intra- and inter-assay variations were measured as 10% and 5.3% for lycopene and 11.2% and 6.5% for beta-carotene, respectively, which has not show higher accuracy than the presented method.

The results of the current study indicate that the presented method is of very high accuracy, sensitivity and repeatability. In addition, as the presented method is time consuming and cost effective it is a suitable method for research purposes, especially population studies. However, this method also has some limitations similar to any laboratory method. For example, it is not clear that how many analytes can be simultaneously measured by this method. Clarification of this problem needs to more studies.

10 Conclusion

Quality control tests were indicated that this method is of high sensitivity and accuracy. While low time consuming and low cost of the test makes it a suitable test for research purposes, especially population studies, at the same time, this method also has some limitations similar to any laboratory method. For example, it is not clear that how many analytes can be simultaneously measured by this method. Clarification of this problem needs to more studies.

References

of technology systems, standards and interfaces for agriculture and food sec-
tor, Computer Standards & Interfaces, Volume 35, Issue 4, June 2013, Pages
355-364.
[44] Chisayo Kozuka, Kouichi Yahiku, Chitoshi Takayama, Masayuki Matsu-
shita, Michio Shimabukuro, Hitoshi Masuzaki, Natural food science based
novel approach toward prevention and treatment of obesity and type 2 dia-
betes: Recent studies on brown rice and γ-oryzanol, Obesity Research & Clinical
[45] Rachael Anatol, Steven Bauer, Suzanne Epstein, Ross Flicke, Kristina Lau-
risen, Mark H. Lee, Elizabeth Mansfield, Michelle McMurry-Heath, Joseph
Milone, Carolina Peña, Steven Pollack, Issam Zniné, Continuing to strengthen
FDA's science approach to emerging technologies, Nanomedicine: Nanotech-
nology, Biology and Medicine, Volume 9, Issue 5, July 2013, Pages 594-599.
[46] Jacqueline B. Marcus, Chapter 2 - Food Science Basics: Healthy Cooking
and Baking Demystified: The Science behind Healthy Foods, Cooking and
Baking, In Culinary Nutrition, edited by Jacqueline B. Marcus, Academic Press,
San Diego, 2013, Pages 51-97.
[47] Kristen Stenger, Katie James, Paula Patton, Julie A. Albrecht, Christina
Ferry, Carol Larvic, Carol Schwarz, Use of Technology to Reach Families with
Young Children with Food Safety Information, Journal of Nutrition Edu-
ation and Behavior, Volume 45, Issue 1, January–February 2013, Pages 86-
89.
[48] Kathryn M. Camp, Michele A. Lloyd-Puryear, Lynne Yao, Stephen C.
Grott, Melissa A. Parisi, Andrew Mulberg, Rashmi Gopal-Srivastava, Stephen
Cederbaum, Gregory M. Enns, Abbe G. Eshow, Dianne M. Frazier, John Go-
hagan, Cary Harding, R. Rodney Howell, Karen Regan, Peter W. Stacpoole,
Charles Venditti, Jerry Vockley, Michael Watson, Paul M. Coates, Expanding
research to provide an evidence base for nutritional interventions for the
management of inborn errors of metabolism, Molecular Genetics and Metab-
olism, Volume 109, Issue 4, August 2013, Pages 319-328.
[49] Hye-Kyung Chung, Ju Yeon Park, Yoonsu Cho, Min-Jeong Shin, Contri-
bution of dietary patterns to blood heavy metal concentrations in Korean
adults: Findings from the Fifth Korea National Health and Nutrition Exami-
nation Survey 2010, Food and Chemical Toxicology, Volume 62, December
2013, Pages 645-652.
[50] Mihaela Jurdana, Ana Petelin, Maša Čermešić Bizičak, Mojca Bizičak, Gianni
Biolo, Zala Jenko-Pradnikar, Increased serum visfatin levels in obesity and its
association with anthropometric/biochemical parameters, physical inactivity
and nutrition, e-SPEN Journal, Volume 8, Issue 2, April 2013, Pages e69-e77.
[51] William Kasapila, Sharifudin Md. Shaarani, A survey of nutrition label-
ing on packaged foodstuffs sold in Malawi: Manufacturer practices and legis-
[52] Emanuele Zannini, Wilma Kingston, Elke K. Arendt, Deborah M. Waters,
Christa Drew, Rhona S. Applebaum, Stephanie Atkinson, Fergus M. Clydes-
dale, Eric Hentges, Nancy A. Higley, M. Elizabeth Westring, for the Interna-
tional Life Sciences Institute (ILSI) North America Conflict of Interest Working
Group, How experts are chosen to inform public policy: Can the process be
[53] John W. Finley, David M. Klurfeld, The USDA-Agricultural Research Ser-
vice (ARS) Program in Dietary Surveillance and Food Composition: State of the
Program and Future Directions, Procedia Food Science, Volume 2, 2013,
Pages 157-164.
[54] Stacie M. Jones, A. Wesley Burks, The changing CARE for patients with
food allergy, Journal of Allergy and Clinical Immunology, Volume 131, Issue
1, January 2013, Pages 3-11.
[55] Serse Rezzi, Sebastiano Collino, Laurence Goulet, François-Pierre Martin,
Metabolicomics approaches to nutrient metabolism and future molecular nutri-
tion, TrAC Trends in Analytical Chemistry, Volume 52, December 2013, Pages
112-119.
[56] Sumita Acharjee, Bidyut Kumar Samah, Biotechnologically generating
'super chickpea' for food and nutritional security, Plant Science, Volume 207,
[57] Noemi G. Islam, Hazda Dadabhow, Adam Gillum, Janice Baranowski,
Thea Zimmerman, Amy F. Subar, Tom Baranowski, Digital Food Photog-
raphy: Dietary Surveillance and Beyond, Procedia Food Science, Volume 2,
2013, Pages 122-128.
[58] Garima Pandey, Abhay Kumar Pandey, Nutrition research perspectives in
immune-mediated inflammatory disorders, Indian Journal of Rheumatology,
Volume 8, Issue 1, March 2013, Pages 30-36.
[59] Iris Iglesia, Theodora Mouratidou, Marcela González-Gómez, Romana
Novakovic, Christina Breidenass, David Jiménez-Favín, Inge Huybrechts,
Stefaan De Henauw, Anouk Geelen, Frederic Gottrand, Anthony Kaletos, Lo-
renza Mistura, Fátima Pérez de Heredia, Kurt Widhalm, Yanis Manios, Dena
Molnar, Peter Stehle, Mirjana Gurinovic, Adrienne E.J.M. Cavelaars, Pieter
Van’t Veer, Luis A. Moreno, Socioeconomic factors are associated with folate
and vitamin B12 intakes and related biomarkers concentrations in European
adolescents: the Healthy Lifestyle in Europe by Nutrition in Adolescence
[60] SubbRao M. Gavaravarapu, Group Quiz: A Tool for Nutrition Education
and Self-assessment, Journal of Nutrition Education and Behavior, Volume 45,
Issue 4, July–August 2013, Pages 380-382.
[61] Judith Buttriss, Helen Riley, Sustainable diets: Harnessing the nutrition
[62] Birgit A. Rumpold, Oliver K. Schlüter, Potential and challenges of insects
as an innovative source for food and feed production, Innovative Food Sci-
ciences & Emerging Technologies, Volume 17, January 2013, Pages 1-11.
[63] Josef Neu, Cristine L. Bradley, Zong-Yi Ding, Hugh N. Tucker, Carol Lynn
Berseth, Feeding the Preterm Infant: Opportunities and Challenges of Bring-
ing Science to the Bedside, The Journal of Pediatrics, Volume 162, Issue 3,
Supplement, March 2013, Pages S101-S106.
[64] Rodrigo San-Cristobal, Fermin I. Milagro, J. Alfredo Martínez, Future
Challenges and Present Ethical Considerations in the Use of Personalized Nutri-
tion Based on Genetic Advice, Journal of the Academy of Nutrition and Di-
etics, Volume 113, Issue 11, November 2013, Pages 1447-1454.
[65] Paul Warren, Andy Golden, John Hanover, Dona Love, Freya Shephard,
Nathaniel J. Szewczyk, Evaluation of the fluids mixing enclosure system for
life science experiments during a commercial Caenorhabditis elegans space-
flight experiment, Advances in Space Research, Volume 51, Issue 12, 15 June
2013, Pages 2241-2250.
[66] The Academy Quality Management Committee and Scope of Practice


