
International Journal of Scientific & Engineering Research Volume 9, Issue 8, August-2018 57
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Security of Distributed Information Systems Based on
Component-Based Software Engineering

Yassine CHAOUCHE, Youssef FAKHRI

Abstract— Distributed systems have the particularity of linking several machines that coexist in a heterogeneous and unreliable environment. Moreover,
their proper functioning depends on the messages they share on the network. It was therefore essential to question the security measures adapted and
deployed in this context. We will present in this article the most known security threats that these systems suffer then we will track the different
mechanisms of securing distributed systems, then we will present the CBSE model as an appropriate solution to the requirements of modularity,
dynamicity and security of this type of systems.

Index Terms— Security, Distributed system, Security Threats, Encryption, Cryptography, CBSE, Fractal .

—————————— ——————————

1 INTRODUCTION

D
istributed systems (or distributed systems), as opposed to

centralized systems, are composed of several independent
machines, having distinct physical memories, connected to
each other in a network and communicating via this network.
From the point of view of the user, no difference is perceptible
between a distributed system and a centralized system. That
said, these systems make it possible to guarantee properties
that are not available in a centralized system, for example
redundancy, which makes it possible to mitigate material
faults or to make the same service available to several actors
without loss of time; performance, guaranteed by the pooling
of several computing units allowing parallel processing in a
shorter time; and data protection, which is not available
everywhere at the same time, but only some views are
exported.

 A distributed system is usually separable into several
fully autonomous modules, each responsible for its own
operation. This autonomy makes it possible on the one hand
to use heterogeneous technologies, platforms or languages in
each of these modules, and on the other hand to run them
simultaneously and thus guarantee a concurrent
programming.

 However, distributed systems are subject to several risks,
due to the points of failure they possess in addition to
centralized systems, such as the unsecured network, traffic,
nodes themselves, and so on.

 In the following sections, we present the various security
threats that distributed systems may encounter as well as the
different mechanisms used to avoid them, then we will
introduce the Component-based software engineering (CBSE)
model as a solution for separately implementing nodes and
communication channels, while meeting the requirements of
modularity, dynamicity and security of this type of system.

2 SECURITY THREATS FOR DISTRIBUTED SYSTEMS
 The most well-known security threats for distributed
systems are caused by network attacks, the most common of

which are:
Distributed Denial of Service (DDoS) is an attack that renders
the service unavailable to users by overwhelming it with
unnecessary traffic. This attack is caused by several machines
at once (unlike the DoS, which is perpetrated by a single
attacker), and is difficult to counter or avoid.
MITM (Man In The Middle) This attack of the Middle Man is a
form of espionage in which the attacker makes independent
connections with the victims and relays the messages between
them, making them believe that they are talk to each other The
attacker can thus intercept all the messages circulating
between the victims and inject new ones, by passing
themselves respectively by one of the victims to the other.
IP Spoofing This is an attack where the attacker personifies
another machine by sending messages with his IP address.
Packet Sniffing This is an attack where the attacker intercepts
and records traffic flowing through the network.
Replay Attack This is an attack by the Middle Man where the
attacker repeats or delays a valid data transmission. It can be
useful for the attacker in the case where, for example, he
wishes to impersonate a user by saving his encrypted
password used in a first exchange as proof of identity, and
returning it to another exchange.
 These attacks are quite common, and their advent can be
somewhat dangerous for the system, especially if the
manipulated data is critical, such as bank data or personal
information. To avoid or counteract them, we must ensure
certain security properties. We quote in this part the most
important properties.

3 USUAL SECURITY PROPERTIES
The most common security properties for distributed systems
are: Authentication This property represents the procedure
that allows the distributed system to verify the identity of an
entity, whether a user or a machine that is part of or not part
of the system. to allow access to resources. It thus makes it
possible to validate the authenticity of the entity in question.
Confidentiality This property makes it possible to protect
information whose access is limited to only the entities that are
known to know it.
Integrity This property implies that the alteration of

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 8, August-2018 58
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

information can only be done in a voluntary and legitimate
way.
Availability This property guarantees the ability of the system
to perform a function under defined schedule, time and
performance conditions.
Non repudiation This property ensures that the information
can not be plausibly disavowed.

4 SECURITY MECHANISMS FOR DISTRIBUTED SYSTEMS
To be able to protect the distributed systems from the attacks
mentioned above, security mechanisms are defined. We quote
them in this part.

4.1 Access control
 Access control is a security mechanism designed to protect
physical resources by verifying whether an entity requesting
access to this resource has the necessary rights to do so.
 To provide access control, the system must provide both an
authentication mechanism, which allows an entity to be
recognized by the system (for example, a password or a card),
and a mechanism for accessing the system. authorization,
which allows associating with an entity a set of rights on a
resource.
 According to Nikander⁷, access control includes the
concept of an access control matrix, where the columns carry
the names of the subjects (active entities), the lines of the
objects, and each cell includes the actions that the subject is
authorized to perform on the object. In practice, the access
control matrix is an abstract elemaratelent. The information
that is included is usually shown sepy line by line, in the form
of ACLs (Access Control Lists), or column by column in the
form of capabilities.

4.2 Cryptographic primitives
 Since distributed systems have the particularity of evolving
in an often unreliable environment, all the data exchanged
between the nodes must be secured at the application level.
This security during transport implies that (1) the secret data
must not be visible to an attacker, (2) the integrity of the data
must be preserved, in the sense that the data must not be
modified during transport by third parties and (3) the receiver
of the data must be able to verify that this data comes from the
entity that claims to have sent it. To be able to guarantee these
properties, cryptographic mechanisms are generally used.

4.2.1 Hash function (Cryptographic hash)
A hash function is a function that ensures the integrity of a
message. It takes a message as input and generates a block of
bits, of length reaching several hundred bits, which represents
the digital fingerprint of the message (message digest). If the
message is modified, even slightly, by a third person for
example, a significant change is made in the fingerprint
(ideally, 50% of the fingerprint changes for a bit changed in
the initial message).
 Several hashing algorithms are defined. The following two
algorithms are the most used:

- MD6, for Message Digest 6, is a cryptographic hash function
that allows to obtain the digital fingerprint of a file (we often
speak of message). MD6 was developed by a group1 led by
Ronald L. Rivest, American cryptologist who invented MD5
and participated in the development of RSA, with Shamir and
Adleman.
MD6 was proposed to participate in the NIST hash function
competition in 2008 but was not selected in the second
selection stage.
SHA-2 (Secure Hash Algorithm) is a family of hash functions
that have been designed by the US National Security Agency
(NSA), modeled on the SHA-1 and SHA-0 functions, which
are themselves strongly inspired. of Ron Rivest's MD4
function (which paralleled MD5).

4.2.2 Encryption
4.2.2.1 Symmetric encryption

 The symmetric encryption is as follows: Alice and Bob each
have a shared key that they are the only ones to know. They
agree to use a common cryptographic algorithm, called a
cipher. When Alice wants to send a message to Bob, she
encrypts the original message (plain text) to create a
cryptogram. She then sends the cryptogram to Bob, who
receives it and decrypts it with his secret key to recreate the
original clear message. If Chuck is spying on their
communication, he can only see the cryptogram. Thus, the
confidentiality of the message is preserved.
 It is possible to encrypt bit by bit or block by block. The
blocks are typically 64 bits in size. If the message is not a
multiple of 64, then the last block (the shortest) must be filled
with random values until it reaches 64 bits (this concept is
called padding). Bit-by-bit encryption is no longer used for
hardware implementations.
 The strength of private key encryption is determined by the
cryptography algorithm and the length of the key.
 There are several algorithms for private key encryption,
including:
- DES (Data Encryption Standard): invented by IBM in 1970
and adopted by the American government as standard. It is a
56-bit block algorithm.
- TripleDES: Used to handle 56-bit key loopholes by increasing
the DES technology by passing the plaintext through the DES
algorithm 3 times, with two different keys, giving the key a
real strength of 112 bits . Also known as DESede (for encrypt,
decrypt and encrypt, the three phases through which it
passes).
- AES (Advanced Encryption Standard): replaces DES as
American standard. It was invented by Joan Daemen and
Vincent Rijmen and is also known as the Rinjdael algorithm. It
is a 128-bit block algorithm with keys of length 128, 192 or 256
bits.
- Blowfish: Developed by Bruce Shneider. It is a variable key
length algorithm ranging from 32 to 448 bits (multiples of 8),
and used mainly for an implementation on software for
microprocessors.
- PBE (Password Based Encryption): algorithm that uses the
password as an encryption key. It can be used in combination
with a variety of digital fingerprints and private key

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 8, August-2018 59
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

algorithms.
4.2.2.2 Asymmetric encryption

Symmetric encryption suffers from a major drawback: how to
share the key between Alice and Bob? If Alice generates it, she
has to send it to Bob; however, it is sensitive information that
needs to be encrypted. However, no key has been exchanged
to achieve this encryption.
 Asymmetric encryption, invented in the 1970s, solved the
problem of encrypting messages between two parties without
prior agreement on the keys. In this type of encryption, Alice
and Bob each have two different pairs of keys: a key is secret
and should not be shared with anyone, and the other is public,
and therefore visible to everyone.
 If Alice wants to send a secret message to Bob, she encrypts
the message using Bob's public key and sends it to him. Bob
then uses his private key to decipher the message. Chuck can
see the two public keys as well as the encrypted message, but
can not decipher the message because he does not have access
to the secret keys.
 The keys (public and secret) are generated in pairs and are
larger than the equivalent private encryption keys. It is not
possible to deduce a key from the other. The following two
algorithms are used for public key encryption:
 - RSA: (Rivest Shamir Adleman): described in 1977 by Ronald
Rivest, Adi Shamir and Leonard Adleman, and patented by
MIT (Massachusets Institute of Technology) in 1983. This is
the most popular public key encryption algorithm . It is
widely used in e-commerce and Internet data exchange in
general.
- Diffie-Hellman: technically known as a key-agreement
algorithm: it can not be used for encryption, but to allow both
parties to deduce a secret key by sharing information on a
public channel. This key can then be used for symmetric
encryption.

4.2.2.3 Session Key Encryption
 Public key encryption is slow (100 to 1000 times slower than
private key encryption), so a hybrid technique is typically
used in practice. One of the parties generates a secret key,
called a session key, which it encrypts with the public key of
the other party to send to it. Then symmetric encryption is
used to encrypt the message using the exchanged session key.

 4.2.3 Signature
The problem with encryption is above all to prove that the
message comes from the sender who claims to have sent it.
Chuck could send a request to Bob pretending to be Alice
 This problem can be solved using the digital signature. It is a
model used to prove that a message comes from a given part.
One way to implement a digital signature is to use the reverse
process with asymmetric encryption. Instead of encrypting the
message with the public key and decrypting it with the private
key, the private key is used by the sender to sign the message
and the recipient uses the public key of the sender to decrypt
it. As only the sender knows the private key, the recipient can
be sure that the message really comes from him.
 In reality, only the digital fingerprint (instead of the whole
message) is signed by the private key. Thus, if Alice wants to
send Bob a signed message, she generates the message's print

and signs it with her private key. She sends the message (in
plain text) and the signature to Bob. Bob decrypts the signed
fingerprint with Alice's public key, calculates the fingerprint
from the plaintext message, and verifies that both fingerprints
are identical. If so, Bob is assured that it was Alice who sent
the message.
 Note here that the digital signature does not encrypt the
message, so encryption techniques should be used in
conjunction with signatures if confidentiality is also required.

 4.2.4 certificates
The use of the digital signature can prove that a message was
sent by a given party, but how to make sure that the public
key used as that of Alice is not really that of Amanda? This
problem can be solved by using a digital certificate, which
makes it possible to package an identity with the public key
and which is signed by a third party called Certificate
Authority (CA).
 A certification authority is an organization that verifies the
identity (in the sense real physical identity) of a party and
signs the public key and identity of that party with its private
key. The recipient of a message can obtain the digital
certificate of the sender and verify (or decrypt) with the public
key of the CA, previously known by all parties. This proves
that the certificate is valid and allows the recipient to retrieve
the public key from the sender to verify its signature and send
it an encrypted message.

4.3 Delegation
Delegation is a security mechanism that allows a subject to
delegate their permissions and rights to another subject. When
an entity is approved for delegation, it can represent the other
entity and use services on its behalf. Delegation is useful if you
want to optimize the number of stored identities, or avoid
systematic recourse to the CA.
 There are two types of delegation:
 - Authentication delegation: It is defined whether an
authentication mechanism provides an identity different from
the valid identity of the user, provided that the owner of the
effective identity has already authorized the other user to use
your own identity.
 - Access Control Delegation: This is done when a user
delegates some of his permissions to another to access a
resource.
 Delegation has been implemented in several ways in the
literature. For example, we quote Welch⁸, who defines
delegation as the authorization given to a user to dynamically
assign a new X509 identity to an entity and thereby delegate
some of its rights to it. Users create a proxy-type certificate by
issuing an X509 certificate signed by their own claims instead
of dealing with a CA. Proxy certificates can build trust
domains dynamically, assuming that two entities that use
proxy certificates issued by the same authority trust each
other.
 Nikander⁷ attests that the delegation means "to give
someone the power to act as a representative". This can change
the access control matrix. The delegation is carried out thanks
to a certificate SPKI (Simple Public Key Infrastructure),

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 8, August-2018 60
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

represented by 5 fields: C = (I, S, D, A, V)
 - Issuer (I for Issuer): the authority that created and signed
the certificate. Represented by its public key or hash.
 - Subject (S for Subject): Party for whom the certificate is
issued.
 - Authority (A for Authority): Semantic content specific to
the application representing the authority.
 - Delegate? (D for Delegated?): Can this authority in the
certificate be delegated to someone else?
 - Validity (V for Validity): When is the certificate valid?
(period, URL of an online verification service ...)
 The issuer delegates right A to the subject S. If S is a public
key and D is true, then S can delegate that right to someone
else. The validity of the delegation is limited by V. The node
operating system is the only source of primary authority in the
system. The person or system that installs the operating
system for the first time has the ability to create initial
delegations of that authority (equivalent to establishing an
administrator account with a password).
 All the security mechanisms we have presented are designed
to ensure good communication between the different nodes of
a distributed system by securing the transport of messages.
However, the risks of information disclosure are not limited to
communication channels, but can sometimes occur at a node
itself. The idea would be to guarantee security both between
the nodes and within the same node. It is for this reason that it
is important to use an explicit representation for distributed
systems that can separately implement nodes and
communication channels, while meeting the requirements of
modularity, dynamicity and security of this type of systems.
CBSE (Component-based software engineering) model seems
the most appropriate for this task

5 CBSE (COMPONENT-BASED SOFTWARE
ENGINEERINGSECTIONS)

CBSE (Component-based software engineering) is a branch of
software engineering that enables the separation of concerns
according to the functionalities available in a given software
system, thanks to its decomposition into components.
A component is a composition unit that can be deployed
independently andassembled with other components. Thanks
to their modularity, the components simplify the development
and management of distributed systems.
Several studies have shown the role of the component in
automating the management of distributed systems
[Abdellatif07, Beisiegel05, Broy98]. Broy et al. define the
components as entities that must (1) encapsulate data, (2) be
implantable into most programming languages, (3) be
hierarchically interlaced, (4) have clearly defined interfaces
and (5) be able to be embedded in frameworks.
The architecture is described in an Architecture Description
Language (ADL). The system is then automatically deployed
on the hosts distributed. Each component can be configured
separately through configuration interfaces (or attributes) that
provide values for component attributes.
We distinguish for each component the server ports, which
receive information.

other components, client ports, which issue information as
messages. In addition, the components are weakly coupled,
which means that the connections between the different
components-called links-can be established in different ways,
regardless of the component code. A link is established
between a client port and a port server.

Figure I shows an example of a component-based system. C1,
C2, C3 and C4 are components. Each component Ci admits
two types of interfaces: the interfaces of Ii control to configure
the component and the communication ports Pi allowing
sending messages from one component to another.
Communication ports can be connected by explicit links. In
this example, C1 is connected to C3, which means that C1 can
send data to C3 via port P1, and C3 receives it via its port P3.
There are two types of ports: client ports that send requests
and ports servers that receive them. For example, in
component C3, P3 is a server port and PO3 is a client port. By
convention, server ports are shown to the left of the
component, and the client ports on his right. A client port can
be attached to multiple server ports, such as for example the
P2 port to the PO ports 4 and P "3. This implies that the same
query is sent to C3 and C4.

5-1 Examples of component-based models
Component-based engineering has been used in several works
to define a model for the construction of the systems. The
models we are interested in are those that allow the clear
separation of architecture and implementation in different
structures. Several models correspond to this description, we
chose the Fractal model.

5-1-1 FRACTAL
Fractal was produced by INRIA and the France Telecom
R & D unit in June 2002. Fractal is a modular and extensible
software component model for building systems distributed
highly adaptable and reconfigurable. It is used to implement,
deploy and reconfigure systems and applications.
A Fractal component consists of two parts: a controller, also
called a membrane and a content. Figure II shows a simple

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 8, August-2018 61
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

example of a system modeled with Fractal.

contents
The content of a component is composed of a finite number of
other components, called subcomponents, which are under the
control of the container component controller. The model
Fractal is thus recursive. A component that exposes its content
is called composite. A component that does not expose its
content but that has at least one control interface is called
primitive component. A component without a control
interface is called a component basic.
Controller
The controller of a component can have external interfaces,
accessible from the outside component or internal, accessible
only from subcomponents. An interface functional is an
interface that corresponds to a provided functionality (server
interface) or required (client interface) of a component,
whereas a control interface is a server side which corresponds
to a non functional aspect.
The control interfaces are listed in several categories:
- AttributeController: The interface responsible for managing
the attributes of a component. A attribute is a configurable
property of a component, usually of primitive type, and used
to configure the state of a component.
- BindingController: Interface responsible for managing the
links of the interfaces other components.
- ContentController: Interface responsible for managing the
subcomponents of a component site.
- LifeCycleController: The interface responsible for managing
the execution of a component, starting, stopping, adding and
removing subcomponents, links or attributes, dynamic way.
link
A link is a communication path between component
interfaces. The model Fractal distinguishes between primitive
and composite links. A primitive link is a link between a client
interface and a server interface of the same address space.
A composite link is a communication path between a random
number of interfaces of components and types of languages.
These links are represented by a set of links primitives and
communication components (also called connectors).

6 CONCLUSION
The purpose of this article is to show the importance of the
component-oriented paradigm as a facilitator for the
application and verification of an information flow control
property, called the non-interference we have presented
the CBSE model as being an appropriate solution to the
requirements of modularity, dynamicity and security of
distributed information systems by giving the example of
the fractal model invented by INRIA, the model presented
can be applied even on large and critical distributed
systems, where any leak of information can be fatal, such as
electronic voting systems, which have the particularity to
be highly dynamic and any leakage can affect the
anonymity of participants.

REFERENCES
[1] Ptitsyn, P. S., & Radko, D. V. (2015). An analysis of

technologies for building information security
infrastructure of global

[2] distributed computing systems. Journal of Theoretical
and Applied Information Technology, 82 (1), 45-53

[3] Grusho, Alexander, Grusho, Nick, Levykin, Michael, &
Timonina, Elena. (2017). Analysis of information
security of distributed information systems. Ultra
Modern Telecommunications and Control Systems and
Workshops (ICUMT), 2017 9th International Congress
on, 2017, 96-100

[4] https://www.tutorialspoint.com/cryptography/public_key
_encryption.htm

[5] http://gleamly.com/article/introduction-attribute-based-
encryption-abe

[6] https://www.geeksforgeeks.org/rsa-algorithm-
cryptography

[7] P. Nikander. An architecture for authorization and
delegation in distributed-object-oriented agent
systems. Citeseer, 1999. 13, 17, 41, 43

[8] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K.
Czajkowski, J. Gawor, C. Kesselman, S. Meder, L.
Pearlman, and S. Tuecke. Security for Grid services. In
Pro-eedings. 12th IEEE International Symposium on
High Performance Distributed Computing, 2003.,
pages 48-57. IEEE Comput. Soc., 2003. 17, 41, 42, 46

[9] en.wikipedia.org/wiki/List_of_hash_functions

IJSER

http://www.ijser.org/

	1 Introduction
	2 Security Threats for Distributed Systems
	3 Usual security properties
	4 Security mechanisms for distributed systems
	4.1 Access control
	4.2 Cryptographic primitives
	4.2.1 Hash function (Cryptographic hash)
	4.2.2 Encryption
	4.2.2.1 Symmetric encryption
	4.2.2.2 Asymmetric encryption
	4.2.2.3 Session Key Encryption

	4.2.3 Signature
	4.2.4 certificates

	4.3 Delegation

	5 CBSE (Component-based software engineeringSections)
	5-1 Examples of component-based models
	5-1-1 FRACTAL

	6 Conclusion

