
International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 1308
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Rule Order Optimization For Packet Filtering
Firewall

Dr.A.B.Bagwan, Dr. P.K. Deshmukh, P.M. Choudhari

Abstract-- An optimization algorithm which optimizes the sequence of firewall rules to reduce packet matching time is presented. It has
seen observed that some incoming packet can match with more than one rule. Such type of rules called as dependent rules and if their
action differs then it is called as conflict. Our main focus in the paper is on dependent rules.

This paper proposes an algorithm that is designed for conflict resolution and gives good network performance by reducing the packet
matching time of the firewall.The algorithm uses the method of hashing for dividing the rule list into many equal sized sub-rule lists and
resolve the conflict by the method of indexing which creates separate list for dependent rules. The performance of the algorithm has
improved performance over other alternative algorithm in terms of packet matching time.

Key terms -- Dependent rules, firewall, network performance, packet matching, conflict resolution, hashing, indexing.

1 INTRODUCTION
It has been noted that some incoming packet can match with
more than one rule. Such type of rules called as dependent
rules and if their action differs then it is called as conflict. So
while designing rule list of firewall their order must get consider
avoiding conflict. At the same time it is necessary to arrange
rules in such way that the rule list should give good
performance in terms of packet matching time. Again it is
necessary to consider that the performance of packet matching
time is not getting suffered as the dependency in the rule list
increases.

In above papers the performance of firewall in terms of
matching time of some incoming packets which are present in
list below is decreases as the dependency depth increases.
We had tried to overcome this problem in our paper by creating
a separate index file for dependent rules .Due to this size of the
main list is decreases which results in faster lookup for packet
matching which improves the performance of firewall in terms
of packet matching time. We used a Windows XP operating
system, 500GB

Hard disk,4 GB Ram, LAN setup, Java programming language
for coding. The techniques used are hashing and indexing for
optimizing a rule list of firewall. The aim of the algorithm is to
improve the performance of firewall in terms of reducing packet
matching as the dependency depth and dependency ratio
increases as compare to alternative approach used for firewall
rule list optimization.
In our algorithm we are creating separate index file for a
dependent rules. We insert all the dependent rules in a
separate index file in a order as it present in a un-optimized
rule list. Hence the main constraint of the algorithm is the
dependent rules present in un-optimized rule list is in correct
order because we are referring this order while inserting a
dependent rules in a index file. If the sequence of dependent
rules in a un-optimized rule list which is input to our algorithm is
wrong then the same order will be generated in a index file.

This causes a conflict during packet matching for such type of
rules and the problem of conflict should not be removed. So
the main constraint of the algorithm is rules present in an un-
optimized rule list which is input to the algorithm is in correct
order otherwise or aim should not be achieved.

2 MOTIVATION
The motivation of algorithm is based on the fact that some
packet coming to the firewall can match with more than one
rule which is called as dependent rule. such type of rules
present in firewall may cause conflict if their action differs
hence during optimization we should have to consider a rule
dependency to avoid conflict during packet matching process.
Our main motivation of optimizing firewall rule list is to give
good performance in terms of packet matching time even if the
dependency depth and size of the rule list increases. Our
algorithm is carried out in two phases. First phase is division
phase and second phase is matching phase. In division phase
we divide the rule list into equal size sub rule lists by using
hashing. The degree of division is depending on the density on
the sub rule list. More the density of the subrulelist more
division is required. Here we used the concept of indexing for
dependent rules. In second phase same hash key is apply on
the incoming packet which gives us a subrulelist position in
which lookup is made. The algorithm gives a good
performance as compare to alternative algorithms in terms of
packet matching time. Dependency ratio is the ratio of rules
which precedes other rule as compared to total number of
rules. Dependency depth is average number of rules present in
dependency set.
This paper is organized as follows. Section II defines the
related work for firewall rule optimization. Each has been
presented their own technique for optimizing rule list by
considering different factors again some are produce their own
technique for conflict resolution. Section III defines problem
definition and the factor which is use for comparison with
previous algorithm and present the proposed technique used
for rule list division. Section IV discuss the comparison with

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 1309
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

previous algorithm by showing the results of previous and
proposed algorithm and section V conclude the paper and
again gives the future work should be done on the related work
for further improvement of performance of firewall.

3 PROGRAMMER’S DESIGN

3.1 Mathematical Model
Problem Statement:- The optimization problem is to reducing
cost for a firewall policy consisting of N filtering rules with di as
the order (depth) of rule Ri in the policy and wi is a given
weight for Ri. Cost is defined as

Here dj is less than dk if Rk is dependent upon Rj preceding it.
Un-optimized rule list is input to the algorithm which produce
optimized list which reduces a packet matching time. The
motivation of algorithm is based on the fact that some packet
coming to the firewall can match with more than one rule which
are called as dependent rule. Such type of rules present in
firewall may cause conflict if their action differs hence during
optimization we should have to consider a rule dependency to
avoid conflict during packet matching process. Our main
motivation of optimizing firewall rule list is to give good
performance in terms of packet matching time even if the
dependency depth and size of the rule list increases. Our
algorithm is carried out in two phases. First phase is division
phase and second phase is matching phase. In division phase
we divide the rule list into equal size sub rule lists by using
hashing. The degree of division is depending on the density on
the subrulelist. More the density of the subrulelist more division
is required. Here we used the concept of indexing for
dependent rules. When we insert a rule in a subrulelist after
applying hash key we check its dependency. If the rule is
dependent on other rule then we create separate index file and
store all these dependent rules in it. We give name of the index
file as a reference in a action column.

In second phase same hash key is apply on the incoming
packet which gives us a subrulelist position in which lookup is
made. The algorithm gives a good performance as compare to
alternative algorithm in terms of packet matching time. As we
have given reference in action column for dependent rules, it
directly goes in a index file for packet matching for such type of
rule.

In our algorithm we are creating separate index file for a
dependent rules. We insert all the dependent rules in a
separate index file in a order as it present in a un-optimized
rule list. Hence the main constraint of the algorithm is the
dependent rules present in un-optimized rule list are in correct
order because we are referring this order while inserting
dependent rules in a index file. If the sequence of dependent
rules in a un-optimized rule list which is input to our algorithm is
wrong then the same order will be generated in a index file.
This causes a conflict during packet matching for such type of
rules and the problem of conflict should not be removed. So

the main constraint of the algorithm is rules present in a un-
optimized rule list which is input to the algorithm is in correct
order otherwise or aim should not be achieved.

3.2 Optimization Algorithm

Un-optimized rule list is input to the algorithm which produce
optimized list which reduces a packet matching time. The
motivation of algorithm is based on the fact that some packet
coming to the firewall can match with more than one rule which
are called as dependent rule. such type of rules present in
firewall may cause conflict if their action differs hence during
optimization we should have to consider a rule dependency to
avoid conflict during packet matching process. Our main
motivation of optimizing firewall rule list is to give good
performance in terms of packet matching time even if the
dependency depth and size of the rule list increases. Our
algorithm is carried out in two phases. First phase is division
phase and second phase is matching phase. In division phase
we divide the rule list into many sub rule lists by using hashing.
The degree of division is depending on the density on the
subrulelist. More the density of the subrulelist more division is
required. Here we used the concept of indexing for dependent
rules.

• Phase1 algorithm is carried in following steps
1. Generate heap from Un-optimize list
2. extract the topmost rule from new list till the list becomes

empty
3. apply the hash key on a field and get the subrulelist

position
4. Check the subrulelist is full or not
5. if the subrulelist is full apply hash key again till we get the

subrulelist which is not full and get the position of
subrulelist otherwise go to step 6

6. insert the rule at that subrulelist
7. after insertion check the rule dependency
8. if the rule is dependent then go to step 9 otherwise go to

step 10
9. create separate index file and insert all dependent rule in

sequence in a index file. Set action column of rule in
subrulelist as a name of index file. otherwise

10. Delete rule and dependent rules from new list.

• Phase2 algorithm is carried out in following steps
1. extract a required field from the packet header
2. apply hash key on that field till get the subrulelist position

in which the rule will be found
3. take the action as per given in action column of matched

rule in a subrulelist
As per given in figure 1 and figure 2 Our algorithm is

carried out in two phases. First phase is division phase and
second phase is matching phase. In division phase we divide
the rule list into many sub rule lists by using hashing. The
degree of division is depending on the density on the
subrulelist. More the density of the subrulelist more division is
required. Here we used the concept of indexing for dependent
rules. When we insert a rule in a subrulelist after applying hash
key we check its dependency. If the rule is dependent on other
rule then we create separate index file and store all these
dependent rules in it. We give name of the index file as a
reference in a action column.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 1310
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

In second phase same hash key is apply on the incoming
packet which gives us a subrulelist position in which lookup is
made. The algorithm gives a good performance as compare to
alternative algorithm in terms of packet matching time. As we
have given reference in action column for dependent rules, it
directly goes in a index file for packet matching for such type of
rule.

3.3 Architecture

Figure 2 shows a simple data flow for matching phase
which is described by following steps

1. In step 1 we take a input from a network traffic as a
network packet and apply same hash key decided in
division phase on a particular field which gives a
subrulelist position. Five this position input to the next
phase.

2. In step 2 we match packet in a subrulelist and take action
accordingly. If action column contains a reference name
then we will go in a next phase.

3. In the next phase we go in a index file mention in action
column of matched rule and match the packet in the index
file and take action accordingly. As we are storing
dependent rules in a correct order the correct action
should be performed which avoid conflict.

4. For dependent rules we create separate index file which
contains related rules of the rule stored in a sub-rule list.
We give the name of index file as a reference to the action
column of rule stored in a subrulelist.

Figure 1: Data flow diagram

4 RESULTS
Figure 2 : Graph showing results

We shown a results for 50 rules by using previous
approach and proposed approach with the help of graph
.Here we have calculate the cost of the optimized rule list
for different dependency depths and dependency ratios.
We got the 9o percent and 20 percent cost of un-
optimized list by previous approach and proposed for
dependency depth 2.5 and ratio 0.06.We got the 89
percent and 19 percent cost of un-optimized list by
previous approach and proposed for dependency depth
2.66 and ratio 0.1.We got the 91 percent and 17 percent
cost of un-optimized list by previous approach and
proposed approach for dependency depth 3.33 and ratio
0.14.

5 CONCLUSION

We conclude that the cost obtained by using our proposed
approach is improved as compare to previous approach. In
proposed technique we have created a many sub-rule lists of
main rule list by using hashing. The same hashing concept is
used during matching process hence during packet matching
the lookup is done in final subrulelist which is having less size
as compare to the main rule list. Hence searching for matching
rule should be faster.

6 REFERENCES
[1] P. Gupta and N. McKeown, “Algorithms for packet
classification,” IEEE Network Magazine, vol. 15, no. 2, pp. 24–
32, March/April 2001.
[2] E. Al-Shaer and H. Hamed, “Firewall policy advisor for
anomaly discovery and rule editing,” in IFIP/IEEE 8th
International Symposium on Integrated Network Management,
March 2003, pp. 17–30.
[3] T. Abbes, A. Bouhoula, and M. Rusinowitch, “An inference
system for detecting firewall filtering rules anomalies,” in
Proceedings of the 2008 ACM Symposium on Applied
Computing, ser. SAC ’08. New York, NY, USA: ACM, March
2008, pp. 2122–2128.
[4] V. Capretta, B. Stepien, A. Felty, and S. Matwin, “Formal
correctness of conflict detection for firewalls,” in Proceedings of
the 2007 ACM Workshop on Formal Methods in Security
Engineering, ser. FMSE ’07. New York, NY, USA: ACM,
November 2007, pp. 22–30.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 1311
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

[5] A. X. Liu and M. G. Gouda, “Complete redundancy
detection in firewalls,” in Data and Applications Security XIX,
ser. Lecture Notes in Computer Science, S. Jajodia and D.
Wijesekera, Eds. Springer Berlin / Heidelberg, 2005, vol. 3654,
pp. 193–206.
[6] A. X. Liu, E. Torng, and C. R. Meiners, “Firewall
compressor: An algorithm for minimizing firewall policies,” in
INFOCOM 2008. The 27th Conference on Computer
Communications. IEEE, April 2008, pp. 176–180.
[7] H. Hamed and E. Al-Shaer, “Dynamic rule-ordering
optimization for high-speed firewall filtering,” in Proceedings of
the 2006 ACM Symposium on Information, Computer and
Communications Security, ser. ASIACCS ’06. New York, NY,
USA: ACM, March 2006, pp. 332– 342.
[8] J. L. Garcıa-Dorado, J. A. Hern´andez, J. Aracil, J. E. L. de
Vergara, F. Montserrat, E. Robles, and T. de Miguel, “On the
duration and spatial characteristics of internet traffic
measurement experiments,” IEEE Communications Magazine,
vol. 46, no. 11, pp. 148–155, November 2008.

IJSER

http://www.ijser.org/

	1 INTRODUCTION
	2 Motivation
	3 Programmer’s design
	3.1 Mathematical Model
	3.2 Optimization Algorithm
	3.3 Architecture

	4 Results
	5 Conclusion
	6 References

