Abstract

Recently Lahiri and Banerjee [1] have introduced the concept of Ritt-order of an entire Dirichlet Series and proved sum and product theorems. They as obtained Ritt order for derivatives. In this paper, we introduced the concept of L-Ritt order and discuss it for sum, products and derivatives of functions.

Keywords: Entire dirichlet series, Ritt order, relative L – Ritt order, property (A).

1. Introduction, Definition and Lemmas

For entire functions g_1 and g_2 let $G_1(r) = \max \{g_1(z) : |z| = r\}$ and $G_2(r) = \max \{g_2(z) : |z| = r\}$.

If g_1 is non constant then $G_1(r)$ is strictly increasing and a continuous function of r and its inverse $G_1^{-1} : (g_1(0), \infty) \to (0, \infty)$ exits and $\lim_{R \to \infty} G_1^{-1}(R) = \infty \ldots (1.1)$

Bernal [5] introduced the definition of relative order of g_1 with respect to g_2 denoted by $\rho_{g_2}(g_1)$ as follows
\[\rho_{g_1}(g_1) = \inf\{\mu > 0 : G_1(r) < G_2(r^\mu) \text{ for all } r > r_0(\mu) > 0\} . \tag{1.2} \]

Let \(f(s) \) be an entire function of the complex variable \(s = \sigma + it \) defined by everywhere absolutely convergent Dirichlet series \(\sum_{n=1}^{\infty} a_n e^{\lambda_n} \). (1.3)

where \(0 < \lambda_n < \lambda_{n+1}(n \geq 1) \), \(\lambda_n \to \infty \) as \(n \to \infty \) and \(a_n s \) are complex constants.

If \(\sigma_c \) and \(\sigma_a \) denote respectively the abscissa of convergence and absolute convergence of (1.3) then in this case clearly \(\sigma_c = \sigma_a = \infty \).

Let \(F(\sigma) = \max\{f(\sigma + it)\} \). (1.4)

Then the Ritt order \([16]\) of \(f(s) \) denoted by \(\rho(f) \) is given by

\[\rho(f) = \lim_{\sigma \to \infty} \sup_{\sigma} \frac{\log \log F(\sigma)}{\sigma} = \lim_{\sigma \to \infty} \frac{\log[2]}{\sigma} F(\sigma). \tag{1.5} \]

In other words \(\rho(f) = \inf\{\mu > 0 : \log F(\sigma) < \exp(\sigma \mu) \text{ for all } \sigma > R(\mu)\} . \tag{1.6} \)

Similarly the lower Ritt order of \(f(s) \) denoted by \(\lambda(f) \) may be defined.

In the paper we prove sum results on the related to relative L-Ritt order of an entire Dirichlet series. where \(L = L(\sigma) \) is a positive continuous function increasing slowly i.e. \(L(a\sigma) \approx L(\sigma) \) as \(\sigma \to \infty \) for every constants \(a \). In the paper we do not explain the standard definitions and notations in the theory of entire functions as those are available in [6]. The following definitions are well known.

Definition 1. The relative Ritt order of \(f(s) \) with respect to an entire function \(g(s) \) is defined by

\[\rho_g(f) = \inf\{\mu > 0 : \log F(\sigma) < G(\sigma \mu) \text{ for all } \sigma \} \tag{1.7} \]

where \(G(r) = \max\{|g(s)| : |s| = r\} \). Clearly \(\rho_g(f) = \rho(f) \) if \(g(s) = e^s \). The following analogous definition from [5] will be needed.

Definition 2. A nonconstant entire function \(g(s) \) is said to have the property (A) if for any \(\delta > 1 \) and positive \(\sigma, [G(\sigma)]^\delta \leq G(\sigma^s) \) holds where \(G(\sigma) = \max\{|g(s)| : |s| = \sigma\} \).
Definition 3. The L-Ritt order \(\rho^L(f) \) and the L-Ritt lower order \(\lambda^L(f) \) of \(f(s) \) are defined as follows respectively

\[
\rho^L(f) = \limsup_{\sigma \to \infty} \frac{\log^{[2]} F(\sigma)}{\sigma L(\sigma)} \quad (1.8) \quad \lambda^L(f) = \liminf_{\sigma \to \infty} \frac{\log^{[2]} F(\sigma)}{\sigma L(\sigma)} \quad (1.9)
\]

Where \(\log^{[k]} x = \log(\log^{[k-1]} x) \) for \(k=1,2,3, \ldots \) and \(\log^{[0]} x = x \). Similarly one can define the relative L-Ritt and relative lower L-Ritt order of \(f(s) \).

Definition 4. The relative L-Ritt order \(\rho^L(g,f) \) and the relative lower L-Ritt order \(\lambda^L(g,f) \) of \(f(s) \) with respect to entire \(g(s) \) are respectively defined as

\[
\rho^L(g,f) = \limsup_{\sigma \to \infty} \frac{G^{-1} \log F(\sigma)}{\sigma L(\sigma)} \quad (1.10) \quad \lambda^L(g,f) = \liminf_{\sigma \to \infty} \frac{G^{-1} \log F(\sigma)}{\sigma L(\sigma)} \quad (1.11)
\]

Bernal [5] has proved the following.

Lemma 1 [5]. If \(\alpha > 1, \ 0 < \beta < \alpha \) then \(G(\alpha \sigma) > \beta G(\sigma) \) for all large \(\sigma \).

Lemma 2 [5]. If \(g \) is transcendental with \(g(0) = 0 \) then for all large \(\sigma \) and \(0 < \delta < 1 \).

\[
G(\sigma^\delta) < \tilde{G}(\sigma) < G(2\sigma) \text{ where } \tilde{G}(\sigma) = \max \left\{ \| g'(z) \| : \| z \| = \sigma \right\}
\]

After Bernal, several papers on relative order of entire functions have appeared in the literature where growing interest of researcher on this topic has been noticed (see for example [2],[3],[4],[12],[13],[14],[15],[16]). During the past decades, several authors (see for example [17],[18],[20]) made close investigation on the properties of entire Dirichlet series related to Ritt order.

2. Main Results: Following the sections 1, have proved the following theorem.

Theorem 1. (a) \(\rho^L(g,f) = \limsup_{\sigma \to \infty} \frac{G^{-1} \log F(\sigma)}{\sigma L(\sigma)} \).

(b) If \(F_1(\sigma) \leq F_2(\sigma) \) for all large \(\sigma \), then \(\rho^L(g,f_1) \leq \rho^L(g,f_2) \).

Proof: (a) If \(\varepsilon > 0 \) is arbitrary then from the definition.
\[\rho^L_g(f) + \varepsilon > \frac{G^{-1} \log F(\sigma)}{\sigma L(\sigma)} \quad \text{for all large } \sigma \]

(2.1)

and there exist a sequence of value \(\sigma = \sigma_n \) tending to infinity.

\[\frac{G^{-1} \log F(\sigma_n)}{\sigma_n L(\sigma_n)} > \rho^L_g(f) - \varepsilon \]

(2.2) From (2.1) and (2.2)

\[\limsup_{\sigma \to \infty} \frac{G^{-1} \log F(\sigma)}{\sigma L(\sigma)} = \rho^L_g(f). \]

Proof: (b) For arbitrary \(\varepsilon > 0 \) and for all large \(\sigma \), we can write from (a).

\[F_2(\sigma) < \exp\left[G(\sigma L(\sigma) \left(\rho^L_g(f_1) + \varepsilon \right) \right] \]

Since \(F_1(\sigma) \leq F_2(\sigma) \) for all large \(\sigma \), we obtain

\[\rho^L_g(f_1) = \lim_{\sigma \to \infty} \frac{G^{-1} \log F(\sigma)}{\sigma L(\sigma)} \leq \rho^L_g(f_2) + \varepsilon \]

Since \(\varepsilon > 0 \) is arbitrary \(\rho^L_g(f_1) \leq \rho^L_g(f_2) \).

2.1 Sum and Product Theorems

In this section, we assume that \(f_1, f_2 \) etc. are entire functions of \(s \) defined by everywhere absolutely convergent ordinary Dirichlet series \(\sum_{n=1}^{\infty} \frac{a_n}{n^s}, \sum_{n=1}^{\infty} \frac{b_n}{n^s} \) etc. The product of two such series is considered by Dirichlet product method, which is also everywhere absolutely convergent (see [9], pp 66).

Theorem 2. Let \(g(s) \) be an entire function having the property (A). Then

(i) \(\rho^L_g(f_1 \pm f_2) \leq \max\{\rho^L_g(f_1), \rho^L_g(f_2)\} \) Sign of equality holds when \(\rho^L_g(f_1) \neq \rho^L_g(f_2) \)

and (ii) \(\rho^L_g(f_1 f_2) \leq \max\{\rho^L_g(f_1), \rho^L_g(f_2)\} \).

Proof: (i) We may suppose that \(\rho^L_g(f_1) \) and \(\rho^L_g(f_2) \) both are finite, because in the contrary case the inequality follows immediately. We prove (i) for addition only, because the proof for
subtraction is analogous.

Let \(f = f_1 + f_2 \) , \(\rho = \rho_g^L(f) \rho^L_i = \rho_g^L(f_i) \) \(i = 1,2 \) and \(\rho^L_i(f_1) \leq \rho^L_i(f_2) \).

For arbitrary \(\varepsilon > 0 \) and for all large \(\sigma \), we have from Theorem 1(a)

\[
F_i(\sigma) < \exp\left[G\left(\alpha L(\sigma) \left(\rho_g^L(f_1) + \varepsilon \right) \right) \right]
\]

\[
\leq \exp\left[G\left(\alpha L(\sigma) \left(\rho_g^L(f_2) + \varepsilon \right) \right) \right]
\]

and \(F_2(\sigma) < \exp\left[G\left(\alpha L(\sigma) \left(\rho_g^L(f_2) + \varepsilon \right) \right) \right] \)

So for all large \(\sigma \) \(F(\sigma) \leq F_i(\sigma) + F_2(\sigma) \)

\[
\leq 2 \exp\left[G\left(\alpha L(\sigma) \left(\rho_g^L(f_2) + \varepsilon \right) \right) \right]
\]

\[
< \exp\left[G\left(\alpha L(\sigma) \left(\rho_g^L(f_2) + \varepsilon \right) \right) \right]^{2}, \text{ since for all } x, 2 \exp(x) < \exp(x^2)
\]

\[
\leq \exp\left[G\left(\alpha L(\sigma) \left(\rho_g^L(f_2) + \varepsilon \right) \right) \right]^{\delta} \text{ for every } \delta > 1, \text{ by property (A). Therefore}
\]

\[
\frac{- \log F(\sigma)}{\alpha L(\sigma)} < \left(\rho_g^L(f_2) + \varepsilon \right)^{\delta} \frac{\sigma}{\alpha} \left(L(\sigma) \right)^{-1} \text{ for all large } \sigma
\]

Taking first \(\delta \to 1+0 \) and then limit superior as \(\sigma \to \infty \) and nothing that \(\varepsilon > 0 \) is arbitrary, we obtain \(\rho_g^L(f) < \rho_g^L(f_2) \). This proves the first part of (i).

For the second part of (i), let \(\rho_g^L(f_1) < \rho_g^L(f_2) \).

and suppose that \(\rho_g^L(f_1) < \mu < \lambda < \rho_g^L(f_2) \).

Then for all large \(\sigma \) \(F_i(\sigma) < \exp\left[G\left(\alpha L(\sigma) \mu \right) \right] \)

(2.3)

and there exist an increasing sequence \(\{ \sigma_n \}, \sigma_n \to \infty \)

\[
F_2(\sigma_n) > \exp\left[G\left(\sigma_n L(\sigma_n) \lambda \right) \right] \text{ for } n = 1,2,3,... \quad (2.4)
\]

Using Lemma 1, by setting \(\alpha = \frac{\lambda}{\mu}, r = \sigma \mu, \beta = 1+\varepsilon, 0 < \varepsilon < 1 \) such that \(1 < \beta < \alpha \), we obtain

\[
G\left(\frac{\lambda}{\mu} \sigma \mu \right) > (1+\varepsilon)G(\sigma \mu)
\]

i.e. \(G(\lambda \sigma) > (1+\varepsilon)G(\sigma \mu) \)
Therefore using (2.3) and (2.4) and the fact that \(G(\sigma) > \frac{\log 2}{\epsilon} \) for all large \(\sigma \), we obtain

\[
F_2(\sigma_n) > \exp[G(\sigma_n, L(\sigma_n), \lambda)]
\]

\[> \exp[(1 + \epsilon)G(\sigma_n, L(\sigma_n), \mu)] \]

\[> 2 \exp[G(\sigma_n, L(\sigma_n), \mu)] \]

\[> 2F_1(\sigma_n), \text{ for all large } n. \text{ (2.5)} \]

Now

\[
F(\sigma_n) \geq F_2(\sigma_n) - F_1(\sigma_n)
\]

\[> F_2(\sigma_n) - \frac{1}{2} F_2(\sigma_n), \text{ using (2.5)} \]

\[= \frac{1}{2} F_2(\sigma_n) \]

\[> \frac{1}{2} \exp[G(\sigma_n, L(\sigma_n), \lambda)], \text{ from (2.4)} \]

\[> \exp[(1 - \epsilon)G(\sigma_n, L(\sigma_n), \lambda)], \text{ for all large } n. \]

Let \(\rho^L_g(f_1) < \lambda_1 < \lambda < \rho^L_g(f_2) \), and \(0 < \epsilon < \frac{\lambda - \lambda_1}{\lambda} \) (which is clearly permissible).

Using Lemma 1, by setting \(\alpha = \frac{\lambda}{\lambda_1}, \beta = \frac{1}{1 - \epsilon}, r = \sigma\lambda_1 \), we have, because \(0 < \beta < \alpha \)

\[
G\left(\frac{\lambda}{\lambda_1} \sigma \lambda_1 \right) > \frac{1}{1 - \epsilon} G(\sigma \lambda_1),
\]

i.e. \((1 - \epsilon)G(\lambda \sigma) > G(\sigma \lambda_1) \).

Hence for all large \(n \), \(F(\sigma_n) > \exp[G(\sigma_n, L(\sigma_n), \lambda_1)] \),

i.e. \(\frac{G^{-1} \log F(\sigma_n)}{\sigma_n L(\sigma_n)} > \lambda_1 \) for all large \(n. \)

This gives \(\rho^L_g(f) \geq \lambda_1 \). Since \(\lambda \) & \(\lambda_1 \) both are arbitrary in the interval \((\rho^L_g(f_1), \rho^L_g(f_2)) \),

We have \(\rho^L_g(f) \geq \max\{\rho^L_g(f_1), \rho^L_g(f_2)\} \),
i.e. \(\rho_g^L(f_1 + f_2) \geq \max \{ \rho_g^L(f_1), \rho_g^L(f_2) \} \).

This in conjunction with the first part of (i) gives

\[\rho_g^L(f_1 + f_2) = \max \{ \rho_g^L(f_1), \rho_g^L(f_2) \} \]

which proves (i) completely.

(ii) Let \(f = f_1 f_2 \) and the notations \(\rho_g^L(f), \rho_g^L(f_1) \) and \(\rho_g^L(f_2) \) have the analogous meanings as in (i). If \(\rho_g^L(f_1) \leq \rho_g^L(f_2) \) then for arbitrary \(\varepsilon > 0 \) for all large \(\sigma \)

\[
F(\sigma) \leq F_1(\sigma) F_2(\sigma) \\
< \exp[G(\sigma L(\sigma) (\rho_g^L(f_1) + \varepsilon))] \exp[G(\sigma L(\sigma) (\rho_g^L(f_2) + \varepsilon))] \\
\leq \exp[2G(\sigma L(\sigma) (\rho_g^L(f_2) + \varepsilon))] \\
\leq \exp[2G(\sigma L(\sigma) (\rho_g^L(f_2) + \varepsilon))^\delta]
\]

for every \(\delta > 1 \), by property (A).

The above gives \(\frac{G^{-1} \log F(\sigma)}{\sigma L(\sigma)} \leq (\rho_g^L(f_2) + \varepsilon)^\delta (L(\sigma))^{\delta - 1} \) for all large \(\sigma \). Letting \(\delta \rightarrow 1 + 0 \) and then considering the fact that \(\varepsilon > 0 \) is arbitrary, we obtain \(\rho_g^L(f) \leq \rho_g^L(f_2) \) which proves the theorem.

2.2 Relative L-Ritt order of the derivative

Theorem 3. Let \(f(s) \) be an entire function defined by the Dirichlet series (1) having finite L-Ritt order \(\rho_g^L(f) \) and \(f'(s) \) be its derivative. Then \(\rho_g^L(f) = \rho_g^L(f') \) where \(g(s) \) is a transcendental entire function.

Proof: It is known([17], p139) that for all large value of \(\sigma \) and arbitrary \(\varepsilon > 0 \)

\[
F(\sigma) - \varepsilon < (\sigma L(\sigma) - \sigma_0 L(\sigma_0)) F'(\sigma) + \left| f'(s_0) \right| (3.1)
\]

where \(s_0 = \sigma_0 + i t_0 \) is a fixed complex number and \(F'(\sigma) = \lim_{\varepsilon \rightarrow \infty} \left| f'(\sigma + i \varepsilon) \right| \).

The inequality (3.1) implies \(F(\sigma) < (\sigma L(\sigma)) F'(\sigma) + A + \varepsilon \),
where A is a constant. Taking logarithm, we see that for all large value of σ

$$\log F(\sigma) < \log\left[\alpha L(\sigma)F^-(\sigma)\right] + B_{\sigma}$$

Where $B_{\sigma} \to \infty$ as $\sigma \to \infty$

$$< \log F^-(\sigma) + \log(\alpha L(\sigma)) + B_{\sigma}$$

$$< \log F^-(\sigma) + \alpha L(\sigma)\left(\rho^L_\sigma\left(f^-'\right) + \varepsilon\right) + B_{\sigma}$$

$$< \log F^-(\sigma) + \alpha L(\sigma)\left(\rho^L_\sigma\left(f^-'\right) + 2\varepsilon\right)$$

$$< G[\alpha L(\sigma)\left(\rho^L_\sigma\left(f^-'\right) + \varepsilon\right) + \alpha L(\sigma)\left(\rho^L_\sigma\left(f^-'\right) + 2\varepsilon\right)$$

$$< G[\alpha L(\sigma)\left(\rho^L_\sigma\left(f^-'\right) + 2\varepsilon\right)](3.2)$$

because $G[\alpha L(\sigma)\left(\rho^L_\sigma\left(f^-'\right) + \varepsilon\right) + \alpha L(\sigma)\left(\rho^L_\sigma\left(f^-'\right) + 2\varepsilon\right)] < 1$ for all large σ on using

([5], (d), p213) and ([6], p165).

From (3.2) $\rho^L_\sigma\left(f^-'\right) = \lim_{\sigma \to \infty} \frac{G^{-1}\log F(\sigma)}{\alpha L(\sigma)} \leq \rho^L_\sigma\left(f^-'\right) + 2\varepsilon$.

Since $\varepsilon > 0$ is arbitrary, $\rho^L_\sigma\left(f^-'\right) = \rho^L_\sigma\left(f^-'\right)$

To obtain the reverse inequality, we use the following inequality from ([17], p139)So

$$F^-'(\sigma) - \varepsilon \leq \frac{1}{\delta} F(\sigma + \delta)(3.3)$$

where $\varepsilon > 0$ is arbitrary and $\delta > 0$ is fixed.

So $\log F^-'(\sigma) \leq \log\left(\frac{1}{\delta} F(\sigma + \delta) + \varepsilon\right)$

$$= \log F(\sigma + \delta) + \log\left(\frac{1}{\delta} + \frac{\varepsilon}{F(\sigma + \delta)}\right)$$

$$\leq G\left[(\sigma + \delta)L(\sigma + \delta)(\rho^L_\sigma(f) + \varepsilon)\right] + \log\left(\frac{1}{\delta} + \frac{\varepsilon}{F(\sigma + \delta)}\right)$$

$$\leq G\left[(\sigma + \delta)L(\sigma + \delta)(\rho^L_\sigma(f) + 2\varepsilon)\right]$$

for all large σ.

Therefore \(\rho_g^L(f^\prime) = \limsup_{\sigma \to \infty} \frac{G^{-1}\log F'(\sigma)}{\alpha L(\sigma)} \leq \rho_g^L(f) + 2\varepsilon. \)

Since \(\varepsilon > 0 \) is arbitrary, \(\rho_g^L(f^\prime) \leq \rho_g^L(f) \) which proves the theorem.

If we assume \(g(0) = 0 \), a simpler proof of the following theorem may be provided which relates the L-Ritt order of \(f \) relative to \(g \) and to its derivative \(g^\prime \).

Theorem 4. Let \(f(s) \) be an entire function defined by the Dirichlet series (1) and \(g(s) \) be an entire transcendental function with \(g(0) \), then

\[
\frac{1}{2} \rho_g^L(f) \leq \rho_g^L(f) \leq \rho_g^L(f).
\]

Proof: Since \(g(s) \) is transcendental with \(g(0) = 0 \), we have by Lemma 2 for all large \(\sigma \) and \(0 < \delta < 1 \)

\[
G(\sigma^\delta) < \tilde{G}(\sigma) < G(2\sigma),
\]

where \(\tilde{G}(\sigma) = \max \{ |g^\prime(s)| : |s| = \sigma \} \). By computations it follows that

\[
\frac{1}{2} G^{-1}(\sigma) < G^{-1}(\sigma) < \left(G^{-1}(\sigma) \right)^\frac{1}{\delta},
\]

for all large \(\sigma \). Therefore we can write for all large \(\sigma \)

\[
\frac{1}{2} G^{-1}\left[\log(F(\sigma)) \right]_{\delta} < \frac{G^{-1}\left[\log(F(\sigma)) \right]}{\alpha L(\sigma)} \leq \left(G^{-1}\left[\log(F(\sigma)) \right] \right)^\frac{1}{\delta},
\]

since \(\log F(\sigma) \) is increasing and tending to infinity as \(\sigma \to \infty \) (see [8], [9]). Letting \(\delta \to 1 - 0 \), we obtain for all large \(\sigma \)

\[
\frac{1}{2} G^{-1}\left[\log(F(\sigma)) \right]_{\delta} < \frac{G^{-1}\left[\log(F(\sigma)) \right]}{\alpha L(\sigma)} \leq \frac{G^{-1}\log F(\sigma)}{\alpha L(\sigma)},
\]

and this gives

\[
\frac{1}{2} \rho_g^L(f) \leq \rho_g^L(f) \leq \rho_g^L(f).
\]

which proves the theorem.
References

