Reduction of Titanoferrous Impurities from Kaolin by Selective Adsorption of Flocculating Agents

Mahesh M Kulkarni, Gajanan N Jadhav

Abstract: Kaolin clay is used as a filler and pigment in various applications such as paper, paint, rubber, plastics, adhesives, ink and ceramics etc. Major mineral content in crude kaolin clay is kaolinite along with some accessory minerals as quartz, hematite, mica, feldspar, anatase, rutile, illemnite etc. The Fe and Ti bearing minerals play very important role in determining quality of the kaolin, as these minerals impart yellow, pink or darker color to the white kaolin. Conventional beneficiation methods used in kaolin processing are de-gritting, classification and sodium dithionite bleaching, which improves the optical properties of kaolin, wherein reduction of color imparting constituents such as Fe$_2$O$_3$ and TiO$_2$ is marginal. In the present study, these coloring impurities are separated using selective adsorption of water-soluble polymers. Degritted kaolin samples after passing through 45 micron sieve is used in the study for selective flocculation by polyacrylamide based polymers. The effect of pH, zeta potential, and polymer dose on the reduction of impurities is studied. Analytical tools such as XRF, XRD, and STEM techniques are utilized and results are discussed in detail.

Index Terms: kaolin, selective flocculation, polyacrylamide, iron, titania, zeta potential, selective adsorption, brightness

1 INTRODUCTION

Kaolinite is a mineral belongs to group of aluminosilicates. Kaolin is also known as a “China clay”, as it was discovered at Kauling in China. It is a 1:1 layered silicate belongs to Kaolin group of clay minerals. Structurally, alumina octahedral sheets and silica tetrahedral sheets stacked alternatively forming 1:1 layers. It has a versatile mineral used in diversified industrial applications. Paper, paint, ceramic, and rubber are the major industries, which consumes kaolin for industrial uses [1]. Kaolin is white, soft, inert, non-abrasive, low thermal conductive, plastic clay containing fine grained platelets with high aspect ratio. Kaolin is always associated with other accessory minerals such as quartz, hematite, anatase, feldspar, and mica. These accessory minerals present in kaolin impart color to the kaolin by reducing its commercial value.

Group of scientists have worked on removal of titanoferrous impurities using various techniques. [13] Raghavan et al, studied the effect of high shear pretreatment on removal of TiO$_2$ by flotation. The TiO$_2$ of the feed kaolin was 1.06 % and optimized flotation product was of 0.35 %. Research work shows that High shear pretreatment helps in liberation of TiO$_2$ from kaolin. Influence of pH, rpm, and dispersant dosage were also studied during pretreatment. The froth flotation followed by chemical reductive bleaching is also carried out to evaluate the enhancement in the optical parameters such as brightness. In another study conducted by same group of people shows that SC-HGMS is effective in removing the titanoferrous impurities. The SC-HGMS study was conducted on southern kaolin and western kaolin deposits. Hosseini et al [6] explored the possibilities of bacterial leaching to remove high iron content present in kaolin. Different strains were used to leach iron from kaolin. The feed kaolin clay is highly contaminated with iron of 11% and 42% iron reduction is observed. Chandrasekhar S and Ramaswamy S [3, 14] carried out detailed characterization of impurities by chemical, mineralogical and EPRS studies from both Gujarat and Kerala kaolin. The Kerala kaolin found to be more of ferruginous impurities and Gujarat kaolin found to be more of titanoferrous impurities. Beneficiation studies carried out on High Gradient Magnetic Separation and Citrate-Dithionite-Bicarbonate (CDB) treatments. The free iron from Kerala kaolin is removed by CDB treatment whereas in Gujarat kaolin both free and structural iron associated with titanoferrous impurity was difficult to remove. The crude kaolin contained 1.63 and 0.66 % TiO$_2$ in Kerala and Gujarat kaolin respectively. Reduction of TiO$_2$ in case of Gujarat kaolin was from 1.63 to 0.99%. In another study, chemical leaching of kaolin and its effect on thermally treated products was explored.

Felhi et al [4] carried out research work on feasibility studies of kaolin using sodium dithionite bleaching. The mineralogical study of bottom portion of the worked section is found to be of more illitic with higher TiO$_2$ content. The weak crystalline samples were made suitable for ceramic applications by
reductive bleaching. Ambikadevi V R and Lalithambika M [1] studied the effect of organic acids such as oxalic acid, tartaric acid, ascorbic acid etc, on removal of iron and titania impurities and compared against the magnetic separation studies. Nearly 17% increase in brightness observed in magnetic separation studies. The acid leaching at various temperature is studied and oxalic acid results in best leaching effect at 100 °C. Andreola et al [2] studied rheological behavior of kaolin in presence of SHMP. Electro kinetic measurement confirmed the SHMP adsorbs on to the surface of kaolin in the study. Rheological behavior affected because of presence of Calcium cations present in clay. Paul et al [11] characterized the TiO₂ impurities present in the Georgia kaolins. Murray et al [10] discussed in detail about effect of mineralogy, chemical composition, viscosity, particle size, shape, brightness, gloss, and opacity of kaolin on paper coating application. Process and engineering aspects of producing engineered kaolin with narrow particle size distribution are also discussed. Yee-Ho and Somsundaram [16] studied the carrier flotation of kaolin, where Calcium ions are used as carriers. Saikia et al [15] studied beneficiation of ferruginous kaolin from Deopani, Assam. Magnetic separation followed by dithionite bleaching is reviewed to enhance the optical properties. Suitability of beneficiated products analyzed for ceramic applications. Asmatulu [12] compared both froth flotation and selective flocculation to remove TiO₂ impurities from Georgia kaolin followed by dewatering studies. Luz A B and Meddea and Larryod et al [8, 9, 5] worked on separation of titanoferrous impurities. Polymer solutions of 0.1 % concentration are prepared using distilled water to avoid the ionic influences during polymer adsorption. pH adjusted using ten percent sodium hydroxide solution. Effect of pH on separation of impurities is evaluated at two different pH i.e. at pH eight (natural pH of crude kaolin), at pH nine and pH ten. Clay slurry is mixed using high shear agitator for 30 minutes. Anionic polymers added with mild agitation and allowed to settle for 30 minutes. The TiO₂ recovery in flocculated mass is of 80%. In these both studies, the use of Hydroxamate collector resulted in better selectivity of the TiO₂ impurities.

In consideration of economic challenges in reducing the chemical consumption in separation processes of kaolin, in the present studies separation of titanoferrous impurities is studied by collectorless selective flocculation by using modern polymer flocculants. The efficiency of separation is evaluated at different ionic concentration i.e. at two different pH and polymer concentration.

2. MATERIALS AND METHODS

Chemical analysis is carried out using ED X-ray Fluorescence, Shimadzu model EDX-700. Powder XRD was carried out on un-oriented sample with Shimadzu model XRD-6000 operating at 40 kV and 30 mA current using Ni-filtered Cu Kα radiation at a scanning speed of 0.5 2θ/min. Quantitative mineralogical analysis is carried out according reitveld curve fitting method using sirquant, CSIRO, Australia software. Scanning electron microscope model no 6500LV, Jeol is used for morphological studies. The Jeol TEM 2100F is used for transmission electron microscope studies. The zeta potential measurements are carried out using Malvern’s zetasizer. Optical properties were measured using Hunter lab’s colorflex. The commercial available Anionic polyacrylamide based polymers with varying molecular weight are selected for the study. The effect of three different polymers LM-143, MM-149 and MM-349 are evaluated on separation of titanoferrous impurities. Polymer solutions of 0.1 % concentration are prepared using distilled water to avoid the ionic influences during polymer adsorption. pH adjusted using ten percent sodium hydroxide solution. Effect of pH on separation of impurities is evaluated at two different pH i.e. at pH eight (natural pH of crude kaolin), at pH nine and pH ten. Clay slurry is mixed using high shear agitator for 30 minutes. Anionic polymers added with mild agitation and allowed to settle for 30 minutes. Flocculated and suspended mass is separated by siphoning the suspended portion. Both the fractions are analyzed for chemical, mineralogical, morphological and optical properties.

3 RESULTS AND DISCUSSION

Crude kaolin analysis represented in Table 1 infers the presence of quartz and titanoferrous impurities. The TiO₂ content is nearly four percent, which influences the optical property with lesser brightness of 68.8%. The Figure 1 represents the clay behavior at different pH, showing surface charge distribution at various pH. The zeta potential at alkaline pH shows maximum negative value (jianfeng et al 2006) exhibiting typical kaolin behavior.

At alkaline pH better dispersion (Hu et al 2003) and liberation of titanoferrous impurities is expected because of more number of negative surface charges. The degritted clay sample shows marginal improvement in kaolinite content and less influence on the titanoferrous impurities and brightness. Crude clay pH found to be eight.
Table 1. Crude kaolin and degritted kaolin characterization

<table>
<thead>
<tr>
<th>Chemical Analysis, %</th>
<th>Crude clay</th>
<th>Degritted clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>42.96</td>
<td>42.12</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>37.05</td>
<td>37.54</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.4</td>
<td>1.34</td>
</tr>
<tr>
<td>TiO₂</td>
<td>4.03</td>
<td>4.08</td>
</tr>
<tr>
<td>LOI</td>
<td>13.5</td>
<td>13.92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantitative Mineralogy, %</th>
<th>Crude Clay</th>
<th>Degritted clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaolinite</td>
<td>84</td>
<td>87</td>
</tr>
<tr>
<td>Quartz</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Anatase</td>
<td>3.6</td>
<td>3.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optical Properties</th>
<th>Crude clay</th>
<th>Degritted clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>81.1</td>
<td>82.7</td>
</tr>
<tr>
<td>a</td>
<td>0.48</td>
<td>0.54</td>
</tr>
<tr>
<td>b</td>
<td>3.18</td>
<td>3.77</td>
</tr>
<tr>
<td>Brightness, %</td>
<td>68.8</td>
<td>69.52</td>
</tr>
</tbody>
</table>

The ionic concentration influences the sedimentation behavior [9] and adsorption of polyacrylamide polymers is controlled by hydrogen bonds between amide groups and metallic surface of mineral impurities present in the clay suspension. The selective adsorption of polymer on impurities present in the degritted kaolin is carried out and the titaniferrous impurities are analyzed in flocculated and suspended mass (product). Efficiency of separation is studied by varying the flocculant dose. The reduction in TiO₂ and Fe₂O₃ is at pH eight and nine is represented in Figure 2, Figure 3 and Figure 4, Figure 5 respectively.
25.94% reduction in TiO$_2$ is observed using MM-349 flocculant with 30 g/ton dose at pH eight with enhanced brightness of 78.12% and 27.26% reduction in TiO$_2$ with enhanced brightness of 79.51% at pH nine. Similar trend is observed in Fe$_2$O$_3$ reduction by using MM-349 flocculant. At pH, nine the better reduction of impurities and brightness enhancement obtained due to better dispersion of kaolin particles and liberation of impurities, which can be correlated to more number of negative surface charges present at this pH. With MM-147 flocculant, the maximum enhancement in brightness of 80.35% is achieved at 20 g/ton flocculant dose with 24.94% TiO$_2$ reduction at pH nine. MM-147 shows decrease in selectivity of titanoferrous impurities at higher of dose 30 g/ton of flocculant, where the TiO$_2$ reduction dropped from 43.79 to 41.19 % and brightness value fell down from 80.35 to 79.9 % (refer Figure 6 & Figure 7).
Performance of LM-143 flocculant in reduction of Fe₂O₃, TiO₂ and brightness enhancement is marginal. Low molecular weight of LM-143 is less effective in adsorbing the metallic surface of titanoferrous impurities. In the present studies all, the grade and recovery data follows the standard patterns as previous works [8, 9] where the maximum grade is achieved with reducing recovery. Figure 8 represents the percentage TiO₂ reduction i.e. grade versus yield curve. The yield of 59% obtained with 42.9% TiO₂ reduction using flocculant MM-349. To understand the adsorption of flocculant on impurities SEM and TEM studies done for fractions generated during the experiment. Flocculant adsorption on titanoferrous impurities is confirmed by STEM analysis and it is represented in Figure 13.

4 CONCLUSIONS

Crude kaolin characterization shows the presence coloring impurities as TiO₂ and Fe₂O₃. Degritted kaolin shows minimum difference to crude kaolin. The selective flocculation process is efficient in separating impurities from kaolin without using collector. The selective adsorption by flocculants is better effective at pH nine, where negative charges present on the kaolin surfaces help in adsorbing the titanoferrous mineral surfaces by polyacrylamide polymers. Both MM-349 and MM-147 flocculants shows positive results by enhancing the brightness of the kaolin and reducing titanoferrous impurities. MM-147 flocculant resulted in achieving maximum brightness of 80.35% from 69% with minimum dose of 20 g/ton dose. The 60% yield achieved with nearly 25% TiO₂ reduction using MM-147. Further scope exists to enhance the brightness by...
reducing titaniferrous impurities by fine tuning the pH, solid content, effect of dispersing agents, flocculant selection, and selectivity enhancement of impurities by collectors such as hydroxamates and possible alternative methods of separations.

Figure 13. Adsorption of flocculant on to the surface of titaniferrous impurities by TEM analysis

ACKNOWLEDGEMENTS
Authors sincerely thank Mr. Chetan Shah, Chairman, Ashapura Group to providing the constant support and opportunity conduct research work. Authors also appreciate all co-workers, instrument operators for providing help and co-ordination for the research work.

REFERENCES

