QUASI-P NORMAL AND QUASI-n-P NORMAL COMPOSITION, WEIGHTED COMPOSITION AND COMPOSITE MULTIPLICATION OPERATORS

D. Senthilkumar and N. Revathi
Department of Mathematics,
Government Arts College(Autonomous)Coimbatore,
Tamilnadu, India

Abstract — In this paper we characterized quasi-P normal, quasi-n-P normal composition, weighted composition, composite multiplication operators

Keywords - quasi-P normal, quasi-n-P normal, composition operators

1 INTRODUCTION
An operator T is said to be Self adjoint operator, If T satisfies $T^* = T$. An operator T is said to be normal, If T satisfies $TT^* = T^*T$. An operator T is said to be n-power normal, If T satisfies $T^n T^n = T^n T^n$. An operator T is said to be binormal, If TT^* and T^*T commute (i.e) $(TT^*)T^* = T^*T(TT^*)$. An operator T is said to be quasi-normal, If T and T^* commute. A operator T is said to be quasi-n-normal, If T and T^n commute. An operator T is said to be quasi-P normal, If T and T^* commute. An operator T is said to be quasi-n-P normal, If T and T^n commute.

SOME PROPERTIES OF QUASI-P NORMAL AND QUASI-n-P NORMAL OPERATORS

THEOREM-1: If $T \in B(H)$ is isometry, Then T is Quasi-p normal.

PROOF: Let T is isometry, we have $T^*T = I$

Now

$$(T + T^*)(TT^*) = (T + T^*)I = (T + T^*)$$

$$(TT^*)(T + T^*) = I(T + T^*) = (T + T^*)$$

(1)

(2)

From (1) and (2) are same.
Hence T is quasi-p normal.

THEOREM-2: Every quasi-normal operator is quasi-p normal.

PROOF: Let T is quasi-normal operator, Then

$$T(T^*T) = (T^*T)T$$

Taking adjoint on the both side of (3) we get,

$$(T(T^*T))^* = (T^*T)^*T^*$$

$$T^*T^* = T^*T$$

(3)

(4)

THEOREM-3: If T is a quasi-n-p normal and μ is any scalar which is real. Then μT is also a quasi-n-p normal operator.

PROOF: Let T is quasi-n-p normal operator, Then

$$(T + T^*)(T^n T^n) = (T^n T^n)(T + T^*)$$

If μ is any scalar which is real, Then

$$(\mu T + (\mu T)^*)((\mu T)^*+(\mu T)) = (\mu T + (\mu T)^*)(\mu T^*)^*$$

$$(\mu T^*)^*(\mu T) + (\mu T)^* = (\mu T^*)^*(\mu T) + (\mu T)^*$$

$$= \mu^2 + \mu^2 T^* + T$$

(5)

(6)

From (5) and (6) are same. Hence T is quasi-n-p normal.

THEOREM-4: If T is a self-adjoint operator then T is a quasi-n-p normal operator.

PROOF: Let T is a self-adjoint operator

$$T^* = T$$

Now,

$$(T + T^*)(T^n T^n) = (T + T)(T^n T^n)$$

$$= 2T + 2T^n$$

(7)

(8)

From (9) and (10), Hence T is quasi-n-p normal.

THEOREM-5: Let T be a quasi-n-p normal operator on a Hilbert space H. Let S be a self-adjoint operator for which T and S commute, Then ST is also a quasi-n-p normal operator.
THEOREM-6: Let $T \in B(H)$ be a quasi-n-p normal operator which is unitary equivalent to S if and only if $TU = UT$ and $T^*U = UT^*$. Then S is a quasi-n-p normal.

THEOREM-7: If T is a quasi-n-normal operator which is n-power normal also, then T is quasi-n-p normal operator.

THEOREM-8: Let T_1 and T_2 be two quasi-n-p normal operators which each is the adjoint of the other, then $T_1 T_2$ is a quasi-n-p normal operator.

THEOREM-9: If T be a self adjoint operator on a Hilbert space H and S be any operator on H, then S^*TS is a quasi-n-p normal operator on H.

THEOREM-10: If T is a quasi-n-p normal, then T^* is a quasi-n-p normal operator.

PROOF: Let T be a quasi-n-p normal.

\[(T + T^*)(T^*T^n) = (T^nT)(T + T^*) \] \tag{11}

Substituting T^* for T in (11), we have

\[(T^* + T)(T^*T^n) = (T^nT)(T^* + T) \] \tag{12}

Hence T^* is quasi-n-p normal.

THEOREM-11: Let T be a quasi-n-p normal operator. Which is a unitary operator also, then T^{-1} is a quasi-n-p normal.

THEOREM-12: Let $T \in B(H)$, $A = (T^*T^n) + (T + T^*)$ and $B = (T^*T^n) - (T + T^*)$, then T is quasi-n-p normal operator if and only if A commutes with B.

THEOREM-13: Let $T \in B(H)$, $X = (T^*T^n)(T + T^*)$, $A = (T^*T^n) + (T + T^*)$ and $B = (T^*T^n) - (T + T^*)$, then T is quasi-n-p normal operator if and only if X commutes with A and B.

QUASI-P NORMAL AND QUASI-n-P NORMAL COMPOSITION OPERATORS

Let C be the composition operator on $L^2(\mu)$. Then the adjoint C^* is given by $C^*f = h.E[f] o T^{-1}$ for $f \in L^2(\mu)$.

Lemma-14: Let P be the projection of $L^2(X, \Sigma, \mu)$ onto $\overline{R(C)}$. Then

\[(i) \ C^*f = hf \text{ and } CC^*f = (h \circ T)Pf, \text{ for all } f \in L^2(\mu). \]
\[(ii) \ \overline{R(C)} = \{ f \in L^2(\mu) : f \text{ is } T^{-1}(\Sigma) \text{ measurable} \}. \]
\[(iii) \text{ If } f \text{ is } T^{-1}(\Sigma) \text{ measurable, } g \text{ and } fg \text{ belong to } L^2(\mu), \text{ then } P(fg) = fP(g). (f \text{ need not be in } L^2(\mu)). \]
\[(iv) \ (C^*C)f = h_kf \text{ for } k \in N. \]
\[(v) \ (CC^*)f = (h \circ T)_\alpha P(f). \]
\[(vi) \ E \text{ is the identity operator on } L^2(\mu) \text{ if and only if } T^{-1}(\Sigma) = \Sigma. \]

The following theorem characterizes the quasi-p normal and quasi-n-p normal composition operators.

THEOREM-15: Every quasinormal composition operator is quasi-p normal operator.

PROOF: Let C be quasinormal composition operator, then

\[C(C^*C) = (C^*C)C \] \tag{13}

Taking adjoint on both sides, we get

\[(C(C^*C))^* = (C^*C)C^* \]
\[C^*C^* = C^*C \]
\[(C + C^*)(C^*C) = (C^*C)(C + C^*) \]
\[= C^*C + C^*C^* \]
\[= (C^*C)(C + C^*) \]

Hence C is quasi-p normal composition operator.

THEOREM-16: A composition operator C on $L^2(\mu)$ is quasi-p normal if and only if C^* is quasi-p normal.

THEOREM-17: A composition operator C on $L^2(\mu)$ is quasi-p normal if and only if $(C + C^*)$ commutes with M_μ. Where M_μ is the multiplication operator induced by $f_\mu = (\frac{f}{\int f})$.

THEOREM-18: Let C be the quasi-p normal operator (if and only if $(h_\mu T). (f o T) + h. E[h] o T^{-1} . E[f] o T^{-1} = h . (f o T) + h^2 E[f] o T^{-1}$.\]

PROOF: Let C be quasi-p normal operator, then

\[(C + C^*)(C^*C) = (C^*C)(C + C^*) \]
\[= C^*C + C^*C^* \]

Consider,

\[(C^*C)f = C^*(h.f) \]
\[C^*(C^*f) = C^* (h.f) \]
\[= h.E[h] o T^{-1} . E[f] o T^{-1} \]
\[(C^*C)f = C^*C(f o T) \]
\[= h . (f o T) \]
\[(C^*C)f = (C^*C)(h.E[f] o T^{-1}) \]
\[= h^2 E[f] o T^{-1} \]

Hence C is quasi-p normal if and only if $(f o T) + h . E[h] o T^{-1} . E[f] o T^{-1} = h . (f o T) + h^2 E[f] o T^{-1}$.

THEOREM-19: Let $C \in B(L^2(\lambda))$, then C^* is quasi-p normal operator if and only if $h.E[h]. E[f] o T^{-1} + (h o T^2). E[f] o T = (h o T). E[h]. E[f] o T^{-1} + (h o T^2). E[f] o T$.

THEOREM-20: If C is quasi-n-normal and n-power normal operator, then C is quasi-n-p normal composition operator.

THEOREM-21: Let C in $L^2(\mu)$ be quasi-n-p normal composition operator. Then C^* is quasi-n-p normal composition operator.

THEOREM-22: If C is quasi-n-p normal composition operator on $L^2(\mu)$. Then αC is quasi-n-p normal composition operator for every real number α.

IJSER © 2019
http://www.ijser.org
THEOREM-23: A composition operator C on $L^2(\mu)$ is quasi-n-p normal if and only if $(C + C^*)$ commutes with $h.E[f]oT^{n-1}$.

THEOREM-24: Let C be quasi-n-p normal if and only if $(h.oT^*).E[f]^oT^{n-1} + h.E[h]oT^{-1}.E[f]^oT^{n-2} = h.E[f]^oT^n$.

THEOREM-25: Let $C \in B(L^2(\mu))$. Then C is the quasi-p normal operator if and only if $(h_n.oT^2).E[f]oT^{n-2} - (h_n.oT^2).E[f]oT^{n-2} = (h_n.oT^2).E[f]oT^{n} + (h_n.oT^2).E[f]oT^{n}$.

QUASI-P NORMAL AND QUASI-n-P NORMAL WEIGHTED COMPOSITION OPERATORS

Let W be the weighted composition operator on $L^2(\mu)$. Let W^* be its adjoint which is given by $W^* f = h.E(u.f) o T^{-1}$ for $f \in L^2(\mu)$. For a positive integer n, $W^n f = u_n. f \circ T^{-n}$. For $f \in L^2(\mu)$, $W^n f = u_n. f \circ T^{-n}$.

Proposition-26: For $u \geq 0$:

(i) $W^* W f = h.E[(u^2)] o T^{-1} \cdot f$.

(ii) $W W^* f = u(h \circ T)E(u.f)$.

THEOREM-27: Let W be a weighted composition operator. Then W is quasi-p normal operator if and only if $h.E[u^2]oT^2 - h.E[u^2]oT^{n-2} = (h.oT^{n-1}).E[f]oT^{-1}(h_n.oT^2) + (h.oT^{n-1}).E[f]oT^{-1}(h_n.oT^2)$.

PROOF: Let W be a quasi-p normal operator. Then

Consider

Hence W is quasi-p normal operator if and only if $u(h.oT^2).E[f]oT^{-2} + h.E[u]oT^{n-1}E[u^2]oT^{-1} + h.E[u^2]oT^n - (h.oT^2).E[f]oT^{-2} = 0$.

THEOREM-28: Let W be a weighted composition operator. Then W is quasi-p normal operator if and only if $h.E[u^2]oT^n - h.E[u]oT^{n-1}E[u^2]oT^{-1} + (h.oT^2).E[f]oT^2 - (h.oT^2).E[f]oT^{-2} = 0$.

THEOREM-29: Let W be a weighted composition operator. Then W is quasi-p normal operator if and only if $(u.(h.oT^2).E[u^2]oT^n - h.E[u]oT^{n-1}E[u^2]oT^{-1} + (h.oT^2).E[f]oT^2 - (h.oT^2).E[f]oT^{-2}) = 0$.

THEOREM-30: Let W be a weighted composition operator. Then W is quasi-p normal operator if and only if $h.E[u]oT^{n-1}E[u^2]oT^{-1} + h.E[u]oT^{n-1}E[u^2]oT^{-1} = 0$.

QUASI-P NORMAL AND QUASI-n-P NORMAL COMPOSITE MULTIPLICATION OPERATORS

A composite multiplication operator is a linear transformation acting on a set of complex valued measurable functions f of the form $M_{u,T}(f) = C_{u,T}(f) = (u.f) o T$. Where u is a complex valued measurable function. In case, $u = 1$ almost everywhere $M_{u,T}$ becomes a composition operator. The adjoint of $M_{u,T}$ is given by $M_{u,T}^* f = u(h \circ T)E(u.f)$.

THEOREM-31: Let $M_{u,T}$ on $L^2(\mu)$ be a composite multiplication operator. Then for each, $\lambda \geq 0$, $M_{u,T}^\lambda$ is a quasi-p normal operator if and only if $h.E[(u^2)]oT^{n-1}E[(u^2)]oT^{-1} + h.E[(u^2)]oT^n - (h.oT^2).E[f]oT^{-2} = 0$.

THEOREM-32: Let $M_{u,T}$ on $L^2(\mu)$ be a composite multiplication operator. Then for each, $\lambda \geq 0$, $M_{u,T}^\lambda$ is a quasi-p normal operator if and only if $h.E[(u^2)]oT^{n-1}E[(u^2)]oT^{-1} + h.E[(u^2)]oT^n - (h.oT^2).E[f]oT^{-2} = 0$.

THEOREM-33: Let $M_{u,T}$ on $L^2(\mu)$ be a composite multiplication operator. Then for each, $\lambda \geq 0$, $M_{u,T}^\lambda$ is a quasi-p normal operator if and only if $h.E[(u^2)]oT^{n-1}E[(u^2)]oT^{-1} + h.E[(u^2)]oT^n - (h.oT^2).E[f]oT^{-2} = 0$.

THEOREM-34: Let $M_{u,T}$ on $L^2(\mu)$ be a composite multiplication operator. Then for each, $\lambda \geq 0$, $M_{u,T}^\lambda$ is a quasi-p normal operator if and only if $h.E[(u^2)]oT^{n-1}E[(u^2)]oT^{-1} + h.E[(u^2)]oT^n - (h.oT^2).E[f]oT^{-2} = 0$. Where u is a complex valued measurable function. In case, $u = 1$ almost everywhere $M_{u,T}$ becomes a composition operator. The adjoint of $M_{u,T}$ is given by $M_{u,T}^* f = u(h \circ T)E(u.f)$.

REFERENCES