Pattern classification for the Handwritten English vowels with Radial Basis Function Neural Networks

Holkar S.R. Dr. Shri Venkateshwara University, Gajraula Amroha (Uttar Pradesh)
E-mail: shrirangholkar @rediff.com

1

Dr. Manu Pratap Singh
Department of Computer Science
Institute of Computer & Information Science
Dr. B.R.Ambedkar University, Agra -282002
Uttar Pradesh, India
E-mail: manu_p_singh@hotmail.com

Abstract: The purpose of this study is to perform the task of pattern classification for hand written English vowels using radial basis function neural network. This implementation has been done with five different samples of hand written English vowels. These characters are presented to the neural network for the training. Adjusting the connection strength and network parameters perform the training process in the neural network. By using a simulator program, each algorithm is compared with five data sets of handwritten English language vowels. The 5 trials indicate the significant difference between the two algorithms for the presented data sets. The results indicate the good convergence for the RBF network.

Key words: Pattern Classification, Radial Basis Function Neural Network, Pattern Recognition.

1. Introduction: Neural networks have been used in a number of applications such as pattern recognition & classification [1,2,3,4], remote sensing [5], dynamic modeling and medicine [6]. The increasing popularity of the neural networks is partly due to their ability to learn and generalization. Particularly, feed forward neural network makes no prior assumption about the statistics of input data and can construct complex decision boundaries [7]. This property makes neural networks, an attractive tool to many pattern classification problems such as hand written curve scripts [8, 9, 10]. This research has been focused on the recognition of handwritten English vowels in its most basic form i.e. individual character classification. The rationale for this study is to improve the efficiency of neural network for handwritten character classification task. In this paper we propose a more suitable and efficient learning method for feed forward neural networks when neural networks are used as a classifier for the hand written English vowels.

The neural network consists of an input layer of nodes, one or more hidden layers, and an output layer [11]. Each node in the layer has one corresponding node in the next layer, thus creating the stacking effect. The input layer’s nodes consists with output functions those deliver data to the first hidden layers nodes. The hidden layer(s) is the processing layer, where all of the actual computation takes place. Each node in a hidden layer computes a sum based on its input from the previous layer (either the input layer or another hidden layer). The sum is then "compacted" by an output function (sigmoid function), which changes the sum down to more a limited and manageable range. The output sum from the hidden layers is
passed to the output layer, which exhibits the final network result. Feed-forward networks may contain any number of hidden layers, but only one input and one output layer. A single-hidden layer network can learn any set of training data that a network with multiple layers can learn [12]. However, a single hidden layer may take longer to train.

In neural networks, the choice of learning algorithm, network topology, weight and bias initialization and input pattern representation are important factors for the network performance in order to accomplish the learning. In particular, the choice of learning algorithm determines the rate of convergence, computational cost and the optimality of the solution. The multi layer feed forward is one of the most widely used neural network architecture. The learning process for the feed forward network can consider as the minimization of the specified error (E) that depends on all the free parameters of the network. The most commonly adopted error function is the least mean square error. In the feed forward neural network with \(J \) processing units in the output layer and for the \(l^{th} \) pattern, the LMS is given by;

\[
E^l = \frac{1}{2} \sum_{j=1}^{M} (d_j^l - y_j^l)^2
\]

(1.1)

where \(l = 1 \) to \(L \) (total number of input-output pattern pairs of training set)

Here \(d_j^l \) and \(y_j^l \) are the desired and actual outputs corresponding to the \(l^{th} \) input pattern. Hence, due to the non-linear nature of \(E \), the minimization of the error function is typically carried out by iterative techniques [13]. Among the various learning algorithms, the back propagation algorithm [14] is one of the most important and widely used algorithms and has been successfully applied in many fields. It is based on the steepest descent gradient and has the advantage of being less computationally expensive. However, the conventional back propagation learning algorithm suffers from short coming, such as slow convergence rate and fixed learning rate. Furthermore it can be stuck to a local minimum of the error.

There are numerous algorithms have been proposed to improve the back propagation learning algorithm. Since, the error surface may have several flat regions; the back propagation algorithm with fixed learning rate may be inefficient. In order to overcome with these problems, vogel et. al. [15] and Jacobs [16] proposed a number of useful heuristic methods, including the dynamic change of the learning rate by a fixed factor and momentum based on the observation of the error signals. Yu et. al. proposed dynamic optimization methods of the learning rate using derivative information [17]. Several other variations of back propagation algorithms based on second order methods have been proposed [18-23]. This method generally converges to minima more rapidly than the method based solely on gradient decent method. However, they require an additional storage and the inversion of the second-order derivatives of the error function with respect to the weights. The storage requirement and computational cost, increases with the square of the number of weights. Consequently, if a large number of weights are required, the application of the second order methods may be expensive.

In this paper, we consider the neural networks architecture which is trained with the gradient descent generalize delta learning rule for Radial basis function [24] in the single hidden layer for the handwritten English vowels. The rate of convergence and the number of epochs for each pattern are important observation of this study. The simulated results are determined from the number of trails with five sets of handwritten characters of English vowels.
The next section presents the implementation of the neural network architecture with Radial basis function. The experimental results and discussion are presented in section 3. Section 5 contains the conclusion of this paper.

2. Implementation of the Radial basis function

The architecture and training methods of the RBF network are well known [25, 26, 27] well established. The Radial basis function network (RBFN) is a universal approximator with a solid foundation in the conventional approximation theory.

An RBFN is a three layer feed forward network that consists of one input layer, one hidden layer and one output layer as shown in figure (1), each input neuron corresponds to a component of an input vector \(x \). The hidden layer consists of \(K \) neurons and one bias neuron. Each node in the hidden layer uses an RBF denoted with \(\phi(r) \), as its non-linear activation function.

![Architecture of the RBFN](image)

Fig. 1: Architecture of the RBFN. The input layer has \(N \) nodes; the hidden and the output layer have \(K \) and \(M \) neurons, respectively. \(\phi_0(x) = 1 \), corresponds to the bias.

The hidden layer performs a non-linear transform of the input and the output layer this layer is a linear combiner which maps the nonlinearity into a new space. The biases of the output layer neurons can be modeled by an additional neuron in the hidden layer, which has a constant activation function \(\phi_0(r) = 1 \). The RBFN can achieve a global optimal solution to the adjustable weights in the minimum MSE range by using the linear optimization method. Thus, for an input pattern \(x \), the output of the \(j \)th node of the output layer can define as:

\[
y_j(x) = \sum_{k=1}^{K} w_{kj} \phi_k(\|x - \mu_k\|) + w_{0j}
\]

for \(j = (1,2,\ldots,M) \) where \(y_j(x) \) is the output of the \(j \)th processing element of the output layer for the RBFN, \(w_{kj} \) is the connection weight from the \(k \)th hidden unit to the \(j \)th output unit, \(\mu_k \) is the prototype or centre of the \(k \)th hidden unit. The Radial Basis Function \(\phi(.) \) is typically selected as the Gaussian function that can be represented as:

\[
\phi_k(x_i) = \exp\left(-\frac{\|x_i - \mu_k\|^2}{2\sigma_k^2}\right) \quad \text{for} \quad k = (1,2,\ldots,K) \\
\text{and} \quad 1 \quad \text{for} \quad k = 0 \quad \text{(bias neuron)}
\]

\[
(2.2)
\]

Where \(x \) is the \(N \)-dimensional input vector, \(\mu_k \) is the vector determining the centre of the basis function \(\phi_k \) and \(\sigma_k \) represents the width of the neuron. The weight vector between the input layer and the \(k \)th hidden layer neuron can
consider as the centre μ_k for the feed forward RBF neural network.

Hence, for a set of L pattern pairs $\{(x_l, y_l)\}$, (2.1) can be expressed in the matrix form as

$$Y = w^T \phi$$

(2.3)

where $W = [w_1, \ldots, w_m]$ is a $K \times M$ weight matrix, $w_j = (w_{0j}, \ldots, w_{lj})^T$, $\phi = [\phi_0, \ldots, \phi_k]$ is a $K \times L$ matrix, $\phi_{l,k} = [\phi_{l,1}, \ldots, \phi_{l,l}]^T$ is the output of the hidden layer for the lth sample, $\phi_{l,k} = \phi(\|x_l - c_k\|)$, $Y = [y_{11}, y_{22}, \ldots, y_{mL}]$ is a $M \times L$ matrix and $y_{lj} = (y_{l1}, \ldots, y_{lm})^T$.

The important aspect of the RBFN is the distinction between the rules of the first and second layers weights. It can be seen [28] that, the basis functions can be interpreted in a way, which allows the first layer weights (the parameters governing the basis function), to be determined by unsupervised learning. This leads to the two stage training procedure for RBFN. In the first stage the input data set $\{x_l\}$ is used to determine the parameters of the basis functions. The basis functions are then keep fixed while the second – layer weights are found in the second phase of training. There are various techniques have been proposed in the literature for optimizing the basis functions such as unsupervised methods like selection of subsets of data points [29], orthogonal least square method [30], clustering algorithm [31], Gaussian mixture models [32] and with the supervised learning method.

It has been observed [33] that the use of unsupervised techniques to determine the basis function parameters is not in general an optimal procedure so far as the subsequent supervised training is concerned. The difficulty with the unsupervised techniques arises due to the setting up of the basis functions, using density estimation on the input data and takes no consideration for the target labels associated with the data. Thus, it is obvious that to set the parameters of the basis functions for the optimal performance, the target data should include in the training procedure and it reflects the supervised training. Hence, the basis function parameters for regression can be found by treating the basis function centers and widths along with the second layer weights, as adaptive parameters to be determined by minimization of an error function. The error function has considered in equation (1.1) as the least mean square error (LMS). This error will minimize along the decent gradient of error surface in the weight space between hidden layer and the output layer. The same error will minimize with respect to the Gaussian basis function’s parameter as defined in equation (2.2). Thus, we obtain the expressions for the derivatives of the error function with respect to the weights and basis function parameters for the set of L pattern pairs (x^l, y^l) as; where $l = 1$ to L.

$$\Delta w_{jk} = -\eta_1 \frac{\partial E^l}{\partial w_{jk}}$$

(2.4)

$$\Delta \mu_k = -\eta_2 \frac{\partial E^l}{\partial \mu_k}$$

(2.5)

and $\Delta \sigma_k = -\eta_3 \frac{\partial E^l}{\partial \sigma_k}$

(2.6)

here, $E^l = \frac{1}{2} \sum_{j=1}^{M} (d^l_j - y^l_j)^2$.
and $y'_j = \sum_{k=1}^{K} w_{jk} \phi_k \|x' - \mu'_k\|$

(2.7)

and $\phi_k \|x' - \mu'_k\| = \exp(-\frac{\|x' - \mu'_k\|^2}{2\sigma_k^2})$

Hence, from the equation (2.4) we have,

$$\Delta w_{jk} = -\eta \frac{\partial E'^i}{\partial w_{jk}} = -\eta \frac{\partial E'^i}{\partial y'_j} \frac{\partial y'_j}{\partial w_{jk}} = -\eta \frac{\partial E'^i}{\partial y'_j} \phi_k \|x' - \mu'_k\|$$

or

$$\Delta w_{jk} = -\eta \frac{\partial E'^i}{\partial s'_j(y'_j)} \frac{\partial s'_j(y'_j)}{\partial y'_j} \exp(-\frac{\|x' - \mu'_k\|^2}{2\sigma_k^2})$$

$$= \eta \sum_{j=1}^{M} (d'_j - y'_j) s'_j(y'_j) \sum_{k=1}^{K} \exp(-\frac{\|x' - \mu'_k\|^2}{2\sigma_k^2})$$

(2.8)

Now, from the equation (2.6) we have

$$\Delta \mu_{ki} = -\eta_2 \frac{\partial E'^i}{\partial \mu_{ki}} = -\eta_2 \frac{\partial E'^i}{\partial y'_j} \frac{\partial y'_j}{\partial \mu_{ki}}$$

= $-\eta_2 \frac{\partial E'^i}{\partial y'_j} w_{jk} \exp(-\frac{\|x' - \mu'_k\|^2}{2\sigma_k^2}) \frac{(x'_j - \mu'_k)}{\sigma_k^2}$

or

$$\Delta \mu_{ki} =$$

$$\eta \sum_{j=1}^{M} \sum_{k=1}^{K} (d'_j - y'_j) s'_j(y'_j) w_{jk} \exp(-\frac{\|x' - \mu'_k\|^2}{2\sigma_k^2}) \frac{(x'_j - \mu'_k)}{\sigma_k^2}$$

(2.9)

Now, from the equation (2.6) we have

$$\Delta \sigma_k = -\eta_3 \frac{\partial E'^i}{\partial \sigma_k} = -\eta_3 \frac{\partial E'^i}{\partial y'_j} \frac{\partial y'_j}{\partial \sigma_k}$$

$$\Delta \sigma_k = -\eta \frac{\partial E'^i}{\partial w_{jk}} \cdot w_{jk} \exp(-\frac{\|x' - \mu'_k\|^2}{2\sigma_k^2}) \frac{\|x' - \mu'_k\|^2}{\sigma_k^2}$$

(2.10)

So that, we have from equations (2.8), (2.9) & (2.10) the expressions for change in weight vector & basis function parameters to accomplish the learning in supervised way. The adjustment of the basis function parameters with supervised learning represents a non-linear optimization problem, which will typically be computationally intensive and may be prove to finding local minima of the error function. Thus, for reasonable well-localized RBF, an input will generate a significant activation in a small region and the opportunity of getting stuck at a local minimum is small. Hence, the training of the network for L pattern pair i.e. (x', y') will accomplish in iterative manner with the modification of weight vector and basis function parameters corresponding to each presented pattern vector. The parameters of the network at the mth step of iteration can express as:

$$w_{jk}(m) = w_{jk}(m-1) + \eta \sum_{j=1}^{M} \sum_{k=1}^{K} (d'_j - y'_j) s'_j(y'_j) w_{jk} \exp(-\frac{\|x' - \mu'_k\|^2}{2\sigma_k^2})$$

(2.11)

$$\mu_{ki}(m) = \mu_{ki}(m-1) + \eta \sum_{j=1}^{M} \sum_{k=1}^{K} (d'_j - y'_j) s'_j(y'_j) w_{jk} \phi_k(x'_j) \frac{(x'_j - \mu'_k)}{\sigma_k^2}$$

(2.12)

$$\sigma_k(m) = \sigma_k(m-1) + \eta \sum_{j=1}^{M} \sum_{k=1}^{K} (d'_j - y'_j) s'_j(y'_j) w_{jk} \phi_k(x'_j) \frac{\|x' - \mu'_k\|^2}{\sigma_k^2}$$

(2.13)
where η_1, η_2, and η_3 are the coefficient of learning rate.

Hence, among the neural network models, RBF network seems to be quite effective for pattern recognition tasks such as handwritten character recognition. Since it is extremely flexible to accommodate various and minute variations in data. Now, in the following subsection we are presenting the simulation designed and implementation details of radial basis function worked as a classifier for the handwritten English vowels recognition problem.

3. Simulation Design and Implementation Details

The experiment described in this segment is designed to implement the algorithm for RBF network with decent gradient method.

Table 1: Parameters Used for Decent Gradient - RBF

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back propagation learning Rate (η)</td>
<td>0.1</td>
</tr>
<tr>
<td>Momentum Term (α)</td>
<td>0.9</td>
</tr>
<tr>
<td>Adaption Rate (K)</td>
<td>3.0</td>
</tr>
<tr>
<td>Spread parameter σ</td>
<td>1.0</td>
</tr>
<tr>
<td>Mean of inputs (c)</td>
<td>Between maximum & minimum values</td>
</tr>
<tr>
<td>Minimum Error Exist in the Network ($MAXE$)</td>
<td>0.00001</td>
</tr>
</tbody>
</table>

Initial weights and biased term values: Randomly Generated Values Between 0 & 1

The task associated to the neural networks in both experiments was to accomplish the training of the handwritten English language vowels in order to generate the appropriate classification. For this, first we obtained the scanned image of five different types of samples of handwritten English language vowels as shown in figure (2). After collecting these samples, we partitioned an English vowel image into four equal parts and calculated the density of the pixels, which belong to the central of gravities of these partitioned images of an English vowel. Like this, we will get 4 densities from an image of handwritten English language vowel, which we use to provide the input to the feed forward neural network. We use this procedure of generating input for a feed forward neural network with each sample of English vowel scanned images.

Fig. 2: Scanned images of five different samples of handwritten English language vowels.
4. Results:

The results presented in this section are demonstrating the implementation of gradient descent learning for RBF network for handwritten English language vowels classification problem. Tables 2 and 3 are representing the results for handwritten English language vowels classification problem performed up to the maximum limit of 50000 iterations.

Table 2: Results for Classification of Handwritten English Language Vowels using decent gradient with RBF network

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Characters</th>
<th>DG-RBF Epochs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sample 1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>550</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>0.4</td>
</tr>
<tr>
<td>4</td>
<td>O</td>
<td>0.4</td>
</tr>
<tr>
<td>5</td>
<td>U</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Both results contain five different types of handwritten samples for each English vowel character. The training has been performed in such a way that repetition of same input sample for a character can not be happen simultaneously, i.e. if we have trained our network with a input sample of a character then next training can not be happen with the other input sample of the same character. This input sample will appear for training after other samples of other characters training. It can observe from the results of tables that the RBFN has converged for 75 percent cases. The tables are showing some real numbers. These entries represents the error exit in the network after executing the simulation program up to 50000 iterations i.e. up to 50000 iterations the algorithm could not converge for a sample of a hand written English language vowels into the feed forward neural network.

3.1 Results for random Trial of Simulation

Table 3: The Results for Classification of Handwritten English Language Vowels decent gradient with RBF network

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Characters</th>
<th>DG-RBF Epochs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sample 1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>4672</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>97</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>532</td>
</tr>
<tr>
<td>4</td>
<td>O</td>
<td>17248</td>
</tr>
<tr>
<td>5</td>
<td>U</td>
<td>5928</td>
</tr>
</tbody>
</table>

5. Conclusions & Future Work

The results described in this paper exhibits the implementation details for descent gradient learning for radial basis function neural network for the classification of the handwritten English language vowels classification problem. It has been also observed that the RBF network has also stuck in local minima of error for some of the cases. The reason for this observation is quite obvious, because there is no
guarantee that RBFNN remains localized after the supervised learning and the adjustment of the basis function parameters with the supervised learning represents a non-linear optimization, which may lead to the local minimum of the error function. But the considered RBF neural network is well localized and it provides that an input is generating a significant activation in a small region. So that, the opportunity is getting stuck at local minima is small. Thus the number of cases for descent gradient RBF network to trap in local minimum is very low.

References

