Optimization of Production System in Supplier-Retailer-Customers based Supply Chain

Raishetty Sridhar¹, K.Eswara Prasad², Ch. Srinivas³

Abstract— This paper presents the production inventory control optimization in production system of supplier – retailer business environment in a Supply Chain. Our results put forward that the proposed model algorithm outperforms the other methods. When ever if need to delivery the items with reduced lead time for customer requirement fulfillment but here an additional cost is added. To solve the problem an iterative procedure is involved for which GA is used and is coded in VC++.

Index Terms— Supply Chain, Optimization, Lead Time, Total Cost, Crashing Cost, Genetic Algorithm, shortage cost, and fill rate

1 INTRODUCTION

In today’s globalize economy, business is looking for ways to optimize the supply chain network by means of integration and cooperation of network echelons. Inventory is one of the most widely discussed areas for improving supply chain efficiency. Wal-Mart and Procter & Gamble popularized it in the late 1980’s. Since the holding of inventories in a Supply Chain (SC) can cost anywhere between 20% to 40% of product value, hence effective management of inventory is critical in SC operations. Many researchers have provided taxonomies and frame works to help practitioners and academicians to understand the nuances of supply chain management. Houlihan (1985) is credited for coining the term Supply Chain (SC) with insight concepts and a strong case for viewing it as a strategy for global business decisions. Many definitions of SCM have been mentioned in the literature and in practice, although the underlying philosophy is the same. The lack of a universal definition for SCM is because of the multidisciplinary origin and evolution of the concept.

Simchi-Levi et al.(2000) defined SCM as a set of approaches utilized to efficiently integrate suppliers, manufacturers, warehouse and stores, so that merchandise is produced and distributed at the right quantities, to the right location and at the right time in order to minimize system wise cost, while satisfying service level requirements. Since the supply chain consists of different echelons; supplier, retailers and customers, hence inventory at different locations has to be maintained to face stochastic demands.

Therefore, inventory has become one of the most widely discussed areas for improving supply chain echelon efficiency. Since the holding of inventories can cost anywhere between 20 to 40% of product value, hence an effective inventory management is critical and most essential (Ballou, 1992).

Supply chain integration has become the focus and goal of many progressive firms and it is used as strategy through which such integration can be achieved. Nevertheless, most quantitative analysis on supply chain management issues is dominated by the framework of multi-echelon serial systems or distribution systems where a relationship between a single vendor and a single buyer or a single vendor and multi buyers is considered. The main issues that have been addressed include deployment of strategies, and control policies. Finally, to survive and hold its position in the market it need to find a method of tactical business strategies which should be on the basis of mutual benefit of supplier, retailer and customers. The problem considered here is typically deals with logistics aspects as well as the inventory level, lead time, and a cost which means a novel approach to mutually benefit suppliers and retailers and also finally customers. The delivery planning is to determine order-up-to level of the supplier and the retailer simultaneously for the objective of minimizing the expected average cost. Impact of Lead time variability is also investigated. The lead time reduction has been viewed as an investment for strategic mutual benefit.

2 LITERATURE REVIEW

Pan and Yang (2002) were credited for minimizing the joint total economic cost of supplier and buyers inventory model with controllable lead time which is a decision variable; however, shortages are not allowed in their paper. Srinivas and Rao (2010, 2007, and 2009) decomposed lead time into four components each having a strategic different crashing cost for reduced lead time. They have proven that the lead time crashing component can be more than three components but it is in
the interests of both parties involved in the strategic business. Hans Siajadi et al. (2006) proposed new multiple shipment models for single vendor multi buyer single product problem. They assumed that the ordering cycle time for each buyer and production cycle time for vendor is same and the order amount for each buyer is delivered in a number of equal size shipments where the frequency and the size of the shipment might be different for each buyer.

The literature review paper of Aytug et al. (2003), Chaudhry and Luo (2005) reveals that no approach attempt has been made to develop a heuristic method such as Genetic Algorithm to determine inventory levels in supply chain echelons. The running time of enumeration technique grows exponentially (Goyal, 1974) while increasing the number of variables. Hence GA method is suggested for more variable problems.

Daniel and Rajendran (2005) studied Genetic Algorithm (GA), enumerate and random search procedure methods to single product serial SC operating with a base stock periodic review system and to optimize the base stock inventory levels in the SC so as to minimize the total supply chain cost, comprising holding and shortage costs at all the installations in the SC. They found the solution generated by the proposed GA is not significantly different from the optimal solution yielded by complete enumeration, but it is significantly good for deterministic replenishment lead times and the other with random replenishment lead times. They did not check for multi buyer stochastic demand and lead time models.

Huayu et al. (2009) has developed a model using both GA and Simulated Annealing to address problems in logistical distribution centers and its aspects of distribution centers, several customers, and different demand of customers and vehicles with capacity constraints in view of minimizing the total travel cost. This paper mainly focuses on scheduling and routing decision for shipment. The paper describes method to allocate shipment based on present and predicted demand. They proposed a new concept of latest departure time for shipment.

The recent paper of Srinivas and Rao (2010) reveals that a quantitative analysis using GA gives significant results when decision variables are more and the computational CPU time will be less compare to enumeration technique. They conclude the inventory management policy with controllable lead time is suitable for facing new SCM challenges with random demand. The proposed models not only can make tradeoffs for mutual benefit but can also enable decision makers to deal systematically.

3 Modeling

In this paper we consider a model that involves single supplier - single retailer and multi customers.

3.1 Assumptions and Notations

Note that the supplier does not have direct connection with customers. Hence we consider the model as two serial vender-buyer models, where in the supplier-retailer part we take the supplier as vender and the retailer as buyer, while in the retailer-customers part we consider it as single vender-multi buyer model. Analysis of both parts is shown as follows.

Part I: Single Supplier – Single Retailer

\[\text{Total Cost} = \text{supplier setup cost} + \text{supplier holding cost} + \text{supplier-}\text{retailer transportation cost} + \text{lead time penalty} + \text{retailer holding} \]

Di demand rate seen by the retailer (continuous), items per unit time

P supplier production rate (continuous), items per unit time

n number of delivery batches, from which the period between two orders is c/n

Q quantity transported per delivery batch, given \(Q = \frac{Dc}{n} \)

s supplier setup cost

T transportation cost per delivery batch from supplier to retailer

L lead time for each order / delivery, \(k=1,2,...,n \)

h1 supplier stock holding cost per item per unit time

h2 retailer stock holding cost per item per unit time

Part II: Single Retailer–Multi Customers

\[I_s = \min \{ DL + z\sigma \sqrt{L} \} \]

m number of customers

Di demand rate seen by customer i (continuous), items per unit time

s’ retailer setup cost

Qi quantity transported per delivery batch to customer i, given \(Q_i = D_i c / n_i \)

Ti transportation cost per delivery to customer i

Overall assumptions and notations are:

- c supplier production rate (continuous), items per unit time
- x items, in this paper we consider single item.

3.2 Model Formulations

The objectives are: (i) to minimize the total cost; (ii) to minimize the total shortage cost; (iii) to minimize the total lead time penalty; and (iv) to maximize the fill rate. The decision variables considered in this work are: \((n, n_i, L_k) \).

The Total Cost is,

\[C_{\text{total}} = \text{supplier setup cost} + \text{supplier holding cost} + \text{supplier-}\text{retailer transportation cost} + \text{lead time penalty} + \text{retailer holding} \]
ing cost + retailer setup cost + retailer safety cost + shortage cost + retailer-customer transportation cost

each part of which can be calculated as below:
supplier setup cost: \(C_{setup}^S = sn \) (1)
supplier holding cost: \(C_{h}^S = h_s \left(P - \frac{n-1}{n} D \right) \) (2)
supplier-retailer transportation cost: \(C_{Trans}^{SR} = Tn \) (3)
lead time penalty:
\[
C_{LT} = \sum_{k=1}^{n} C_{L_k}
\] (4)

where each \(C_{L_k} \) can be calculated as [see Srinivas and Rao (2010)]:
\[
C_L = c_u (L_{u-1} - L) + \sum_{w=1}^{w} c_w (b_w - a_w)
\]
\[
L_u = L_0 - \sum_{w=1}^{u} (b_w - a_w) \text{ and } L_u < L \leq L_{u-1}
\]

retailer holding cost: \(C_{h}^R = h_2 \left(D - \sum_{i=1}^{m} \frac{n_i}{n_i} D_i \right) \) (5)
retailer setup cost: \(C_{setup}^R = s \sum_{i=1}^{m} n_i \) (6)
retailer safety cost: \(C_{safety}^R = h_2 C_{s} \) (7)
shortage cost: \(C_{short}^R = C_s \left(\sum_{i=1}^{m} Q_i - Q \right) \) (8)

where
\[
C_s = \begin{cases}
0.5C_s^0, & \sum_{i=1}^{m} Q_i - Q > \frac{1}{m} \sum_{i=1}^{m} Q_i \\
C_s^0, & \sum_{i=1}^{m} Q_i - Q \leq \frac{1}{m} \sum_{i=1}^{m} Q_i
\end{cases}
\]

shortage cost per item

Retailer-customer transportation cost:
\(C_{trans}^{RC} = \sum_{i=1}^{m} T_i n_i \) (9)

Note that the transportation cost also varies whenever a shortage occurs,

\[
T_i = \begin{cases}
\alpha T_i^0, & \sum_{i=1}^{m} Q_i - Q > \frac{1}{m} \sum_{i=1}^{m} Q_i, \alpha > 1 \\
T_i^0, & \sum_{i=1}^{m} Q_i - Q \leq \frac{1}{m} \sum_{i=1}^{m} Q_i
\end{cases}
\]

Besides, in calculating the shortage cost, we count the times of shortages, noted by \(n_s \).

Hence we get the fill rate:
\[
R_{fill} = \frac{\sum_{i=1}^{m} n_i - n_s}{\sum_{i=1}^{m} n_i}
\] (10)

Therefore the first objective (the total cost) is the sum of Equation (1) to (9), and the rest objectives are Equation (8), (4) and (10) respectively.

3.3 GA Algorithm

We propose Genetic Algorithm (GA) approach to optimize the production inventory system total cost in supply chain. This study attempts to perform both performance analysis and optimization of various inventory policy settings. Genetic Algorithm is a class of evolutionary algorithms that utilize the theories of evolution and natural selection. GA begins with a population of randomly generated strings that represent the problems’ possible solutions. Thereafter, each of these strings is evaluated to find its fitness. The initial population is subjected to genetic evolution to procreate the next generation of candidate solutions

i. Initialization of population
ii. Evaluation function
iii. Selection
iv. Crossover and mutation
v. Repeat (ii) ~ (iv) until the termination criteria.

3.3.1 Initialization

The solution is coded as a chromosome simply in the form of \((n, n_1, L_k)\). Each element of the chromosome is a real number. For example, given the number of customer’s \(m = 3 \), the two feasible solutions / chromosomes are shown below:

| Chromosome 1: | (3, 2, 4, 5, 3.5, 4.0, 5.3) |
| Chromosome 2: | (2, 3, 2.5, 4.6, 3.7, 6.0) |

Note that the length of different chromosomes might be different due to the value of \(n \). In the example given above, the length of Chromosome 1 is 7, since \(n = 3 \) and thus there are 3 \(L_k \)’s. On the other hand, the length of Chromosome 2 is 6, since \(n = 2 \) and thus there are only 2 \(L_k \)’s. A group of chromosome
forms a population and in a population, a chromosome can also be called an individual. Given the population size N, we generate an initial population with size 2N.

3.3.2 Selection

This is the most important procedure, determining the performance of the algorithm. (Here a “better” could be more or less, depends on whether the objective function is to maximize or minimize.)

for each objective function m

sort \(F_i = \{p_1, \cdots, p^n\} \) based on the value of m and get

\[
\{d^1, \cdots, d^n\}
\]

set \(d_{dis}^1 = \infty \) and \(d_{dis}^n = \infty \)

for \(k = 2 \) to \((n - 1) \)

\[
d_{dis}^k = d_{dis}^k + \frac{d_{k+1}^k - d_{k-1}^k}{m_{max} - m_{min}},
\]

where \(d^k(m) \) is the m function value of \(d^k \), and \(m_{max} \) and \(m_{min} \) are the max and min value of m in this front.

Finally, all individuals in the 2N population are sorted first by front and then by crowding distance. Individual \(p \) is strictly better than \(q \) if and only if (i) \(P_{rank} < Q_{rank} \); or (ii) \(P_{rank} = Q_{rank} \) and \(P_{dis} < Q_{dis} \).

Suppose the sorted population is \(P = \{p_1, \cdots, p^{2N}\} \) with \(p^i \) be the best and \(p^{2N} \) be the worst, then the possibility of \(p^i \) be chosen is \(i/\lceil N(2N + 1) \rceil \). Hence the better an individual is, the bigger chance it is chosen for the new population. Also an individual might be selected more than once or never. After N individuals have been selected, delete the rest un-chosen individuals.

3.3.3 Crossover and mutation

Crossover and mutation must be operated to make sure the offsprings are still feasible. Crossover is taken between two random chromosomes with possibility \(P_c \). Since the length of individuals is different and \(n \) determines the length of an individual, a crossover only takes place in \(\{n_i\}_{i=1}^m \) so that it won’t change the feasibility of a chromosome. Randomly select two individuals and randomly choose \(a, b \in \{1, \cdots, m\} \), where \(m \) is the number of customers. Suppose \(a < b \) and then exchange the subsequences \(\{n_a, \cdots, n_b\} \) between the two individuals. See the example below (\(m = 3, a = 2, b = 3 \)).

<table>
<thead>
<tr>
<th>Parent Chromosome 1:</th>
<th>(3, 2, 4, 5, 3, 5, 4, 0, 5.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent Chromosome 2:</td>
<td>(2, 3, 2.5, 4.6, 3.7, 6.0)</td>
</tr>
<tr>
<td>Offspring Chromosome 1:</td>
<td>(3, 2, 2.5, 4.6, 3.5, 4.0, 5.3)</td>
</tr>
<tr>
<td>Offspring Chromosome 2:</td>
<td>(2, 3, 4, 5, 3.7, 6.0)</td>
</tr>
</tbody>
</table>

Mutation is very similar to crossover expect that it takes place in one individual with possibility \(P_m \). As long as \(n \) is fixed, the length of an individual does not change. Therefore randomly pick from \(\{n_i\}_{i=1}^m \) and \(\{L_k\}_{k=1}^n \) and put them with new random real values. See the example below (\(m = 3, \) pick \(n_2, L_1 \) and \(L_2 \)).

<table>
<thead>
<tr>
<th>Parent Chromosome:</th>
<th>(3, 2, 4, 5, 3.5, 4.0, 5.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offspring Chromosome:</td>
<td>(3, 2, 3.7, 5, 5.5, 2.9, 5.3)</td>
</tr>
</tbody>
</table>

4 ILLUSTRATIVE EXAMPLE

The input data refers to Srinivas and Rao (2010): \(c = 1 \) year; \(P = 1600 \) items per year for supplier; \(D = 500 \) items per year for retailer (\(P / D = 3.2 \)); \(s = 400 \) $ per setup for supplier; \(s1 = 100 \) $ per item per year for supplier; \(h1 = 4 \) $ per item per year for supplier; \(h2 = 58 \) $ per item per year for retailer; \(T = 100 \) $ per delivery batch from supplier to retailer; \(Ti = \{30,30,30,30,30\} \$ per delivery batch from retailer to customers; \(Di = \{120,155,90,180,55\} \) items per year for customers; \(\sigma_p = \{5,6,3,6,3\} \); and lead time is calculated as Table 1.

<table>
<thead>
<tr>
<th>(w)</th>
<th>Lead time</th>
<th>((bw - aw))</th>
<th>(cw)</th>
<th>(CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>5.25</td>
<td>1.75</td>
<td>0.4</td>
<td>0.7</td>
</tr>
<tr>
<td>3</td>
<td>3.5</td>
<td>1.75</td>
<td>1.2</td>
<td>2.8</td>
</tr>
<tr>
<td>4</td>
<td>2.625</td>
<td>0.875</td>
<td>5.0</td>
<td>7.175</td>
</tr>
</tbody>
</table>

The range of decision variables are: \(15 \leq n \leq 24 \); \(10 \leq n_i \leq 39 \); and \(2.625 \leq L_k \leq 7 \). Given \(P_c = 0.75 \), \(P_m = 0.05 \), the population size 175 and the termination criteria: to run 500 generations, the computational results are shown in Table 2. The total CPU time is only 4.753 seconds (CPU 2.66GHz, RAM 2.00GB, VC6.0).

5 CONCLUSIONS AND FUTURE SCOPE

We used to study the model with four objective variables such as, total cost, shortage cost, lead time cost. It is observed that for a given set of input values of Srinivas and Rao (2010), the developed model of mutual benefit strategy gives fill rate of above 84% and the supplier-retailer-customer total cost is more compare to consignment stock strategy of Srinivas and Rao (2010) wherein the model is for single vendor and five
buyers with single echelon where as our model is for single supplier - single retailer - five customers with two echelons. Future studies have to be made with multiple products and can be extended to multiple retailers.

REFERENCES

