Optimal solution of Fuzzy Transportation Problem Using Hexagonal Fuzzy Numbers

A. Thamaraiselvi ¹ and R. Santhi ²

¹Research scholar, Department of Mathematics, NGM College, Pollachi, India-642001
 kavinselvi3@gmail.com
²Assistant Professor, Department of Mathematics, NGM College, Pollachi, India-642001
 santhifuzzy@yahoo.co.in

Abstract— In this paper we introduce a fuzzy transportation problem with hexagonal fuzzy numbers. In which the transportation parameters like demand, supply and transportation cost are hexagonal fuzzy numbers. Vogel’s approximation method is used to obtain a fuzzy basic feasible solution and the optimal solution is obtained by fuzzy zero point method. These procedures are illustrated with numerical example. The minimum hexagonal fuzzy total transportation cost with maximum membership value is shown graphically and compared.

Index Terms— Fuzzy Number, Hexagonal fuzzy number, Fuzzy Transportation problem, Initial Basic Feasible Solution, Optimal Solution

1 INTRODUCTION

The transportation problem is the one of the subclasses of LPPs in which the objective is to transport various quantities of a single homogeneous commodity that are spread at various sources to different distances in such a way that the total transportation cost is minimum. Many algorithms have been developed to solve the transportation problem in which the cost coefficients, the demand and supply quantities are known exactly. But in the real life the parameters of the transportation problem are not always exactly known and stable. This uncertainty leads to fuzzy transportation problem. The quantities are uncertain due to many uncontrollable factors like:
- Climate and weather conditions like snow, flood, rain etc
- Road hazards and traffic
- Penalty or extra cost due to delivery time or safety of delivery

In this paper, we introduce a FTP in which all the parameters are hexagonal fuzzy numbers. The IBFS and optimal solutions were obtained by suitable algorithms. The solution procedure is illustrated with suitable example. The hexagonal fuzzy solutions with their membership values are shown graphically.

2 PRELIMINARIES

2.1 Definition (Fuzzy set [FS])

Let X be a nonempty set. A fuzzy set \tilde{A} of X is defined as $\tilde{A} = \{(x, \mu_\tilde{A}(x)) \mid x \in X\}$ where $\mu_\tilde{A}(x)$ is called the membership function which maps each element of X to a value between 0 and 1.

2.2 Definition (Fuzzy Number [FN])

A fuzzy number is a generalization of a regular real number and which does not refer to a single value but rather to a connected set of possible values, where each possible value has its weight between 0 and 1. This weight is called the membership function.

A fuzzy number \tilde{A} is a convex normalized fuzzy set on the real line R such that:
- There exist at least one $x \in R$ with $\mu_{\tilde{A}}(x) = 1$
- $\mu_{\tilde{A}}(x)$ is piecewise continuous
2.3 Definition (Triangular Fuzzy Numbers [TFN])

A fuzzy number A is a TFN [8] denoted by (a_1, a_2, a_3) where a_1, a_2 and a_3 are real numbers and its membership function is given below,

$$
\mu_A(x) = \begin{cases}
\frac{x - a_1}{a_2 - a_1}, & \text{for } a_1 \leq x \leq a_2 \\
1, & \text{for } a_2 \leq x \leq a_3 \\
\frac{a_3 - x}{a_3 - a_2}, & \text{for } a_3 \leq x \leq a_4 \\
0, & \text{otherwise}
\end{cases}
$$

2.4 Definition (Trapezoidal Fuzzy Numbers [TrFN])

A fuzzy number $A = (a_1, a_2, a_3, a_4)$ is a TrFN [1] where a_1, a_2, a_3 and a_4 are real numbers and its membership function is given below,

$$
\mu_A(x) = \begin{cases}
\frac{x - a_1}{a_2 - a_1}, & \text{for } a_1 \leq x \leq a_2 \\
1, & \text{for } a_2 \leq x \leq a_3 \\
\frac{a_3 - x}{a_3 - a_2}, & \text{for } a_3 \leq x \leq a_4 \\
0, & \text{otherwise}
\end{cases}
$$

3 HEXAGONAL FUZZY NUMBERS

3.1 Definition (Hexagonal fuzzy number [HFN])

A fuzzy number A_H is a HFN [14] denoted by $A_H = (a_1, a_2, a_3, a_4, a_5, a_6)$ where a_1, a_2, a_3, a_4, a_5 and a_6 are real numbers and its membership function is given below,

$$
\mu_A(x) = \begin{cases}
\frac{1}{2} \left(\frac{x - a_1}{a_2 - a_1} \right), & \text{for } a_1 \leq x \leq a_2 \\
\frac{1}{2} \left(\frac{x - a_2}{a_3 - a_2} \right), & \text{for } a_2 \leq x \leq a_3 \\
1, & \text{for } a_3 \leq x \leq a_4 \\
\frac{1}{2} \left(\frac{x - a_4}{a_5 - a_4} \right), & \text{for } a_4 \leq x \leq a_5 \\
1, & \text{for } a_5 \leq x \leq a_6 \\
\frac{1}{2} \left(\frac{a_6 - x}{a_6 - a_5} \right), & \text{for } a_6 \leq x \leq a_6 \\
0, & \text{otherwise}
\end{cases}
$$

3.2 Definition

An HFN [9] denoted by A_ω is defined as $A_\omega = (P_1(u), Q_1(v), Q_2(v), P_2(u))$ for $u \in [0,0.5]$ and $v \in [0.5, \omega]$.

3.3 Definition (Positive and Negative HFN)

A HFN $A_H = (a_1, a_2, a_3, a_4, a_5, a_6)$ is positive [10] if $a_i > 0$ for $i = 1, 2, ..., 6$ and it is negative if $a_i < 0$ for $i = 1, 2, ..., 6$.

3.4 Definition (Arithmetic operations on HFN)

If $A_H = (a_1, a_2, a_3, a_4, a_5, a_6)$, $B_H = (b_1, b_2, b_3, b_4, b_5, b_6)$ are two HFN’s [1,2,6] then the following three operations can be performed as follows:

- **Addition:**
 $$A_H + B_H = (a_1 + b_1, a_2 + b_2, a_3 + b_3, a_4 + b_4, a_5 + b_5, a_6 + b_6)$$

- **Subtraction:**
 $$A_H - B_H = (a_1 - b_1, a_2 - b_2, a_3 - b_3, a_4 - b_4, a_5 - b_5, a_6 - b_6)$$

- **Multiplication:**
4 FUZZY TRANSPORTATION PROBLEM [FTP]
Consider a FTP with \(m \) sources and \(n \) destinations with HFN’s. The mathematical formulation of the FTP whose parameters are HFN’s under the case that the total supply is equivalent to the total demand is given by:

\[
\text{Minimize } Z = \sum_{i=1}^{m} \sum_{j=1}^{n} \tilde{c}_{ij} \tilde{x}_{ij} \text{ Subject to } \\
\sum_{j=1}^{n} \tilde{x}_{ij} \approx \tilde{a}_{i} \quad i = 1, 2, ..., m \\
\sum_{i=1}^{m} \tilde{x}_{ij} \approx \tilde{b}_{j} \quad j = 1, 2, ..., n \\
\sum_{i=1}^{m} \tilde{a}_{i} \approx \sum_{j=1}^{n} \tilde{b}_{j} \quad \text{and } \tilde{x}_{ij} \geq 0.
\]

In which the transportation costs \(\tilde{c}_{ij} \), supply \(\tilde{a}_{i} \), and demand \(\tilde{b}_{j} \) are hexagonal fuzzy quantities.

4.1. Algorithm (Vogel’s Approximation Method)
The Vogel’s Approximation Method (VAM) is an iterative method for finding an initial fuzzy basic feasible solution for FTP. The method proceeds as follows:

Step 1: Calculate the magnitude of difference between the minimum and next to minimum transportation cost in each row and column and write it as “Diff.” along the side of the table against the corresponding row/column.

Step 2: In the row /column corresponding to maximum “Diff.”, make the maximum allotment at the box having minimum transportation cost in that row/column.

Step 3: If the maximum “diff.” corresponding to two or more rows or columns are equal, select the top most row and the extreme left column.

4.2. Algorithm (Fuzzy Zero Point Method)
The Fuzzy zero point Method [12] is used for finding fuzzy optimal solution for FTP and it proceeds as follows:

Step 1: Construct the fuzzy transportation table for the given FTP and then, convert it into a balanced one, if it is not.

Step 2: Subtract each row entries of the fuzzy transportation table from the row minimum.

Step 3: Subtract each column entries of the resulting fuzzy transportation table after using the Step 2. from the column minimum.

Step 4: Check if each column fuzzy demand is less to the sum of the fuzzy supplies whose reduced costs in that column are fuzzy zero. Also, if each row fuzzy supply is less to the sum of the column fuzzy demands whose reduced costs in that row are fuzzy zero. If so, go to Step 7. Otherwise go to Step 5.

Step 5: Draw the minimum number of horizontal and vertical lines to cover all the fuzzy zeros of reduced fuzzy transportation table.

Step 6: Construct the new revised fuzzy transportation table as follows:

(i) Find the smallest entry of the reduced fuzzy cost matrix not covered by any lines.

(ii) Subtract this entry from all the uncovered entries and add the same to all entries at the intersection of any two lines.

And then go to Step 4.

Step 7: Select a cell in the reduced fuzzy transportation table whose reduced cost is the maximum cost. Say (x, y). If there is more than one, then select anyone.

Step 8: Select a cell in the x-row or/and y-column of the reduced fuzzy transportation table which is the only cell whose reduced cost is fuzzy zero and then, allot the maximum possible to that cell. If such cell does not occur for the maximum value, find the next maximum so that such a cell occurs. If such cell does not occur for any value, we select any cell in the reduced fuzzy transportation table whose reduced cost is fuzzy zero.

Step 9: Revise the reduced fuzzy transportation table after deleting the fully used fuzzy supply points and the Destin fully received fuzzy demand points and also, modify it to include the not fully used fuzzy supply points and the not fully received fuzzy demand points.

Step 10: Repeat the steps 7 to 9 until all fuzzy supply points are fully used and fuzzy demand points are fully received.

Step 11: This allotment gives a fuzzy solution to the given fuzzy transportation problem.

4.3 Numerical Example
Consider the following FTP with Hexagonal fuzzy numbers.

<table>
<thead>
<tr>
<th>Origins</th>
<th>Destinations</th>
<th>Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>D1</td>
<td>(3.7,11, 15,19,24)</td>
</tr>
<tr>
<td>O2</td>
<td>O2</td>
<td>(16,19,24, 29,34,39)</td>
</tr>
<tr>
<td>O3</td>
<td>O3</td>
<td>(11,14,17, 21,25,30)</td>
</tr>
<tr>
<td>D1</td>
<td>D1</td>
<td>(3,4,5, 6,8,10)</td>
</tr>
</tbody>
</table>

Solution:
The fuzzy IBFS of the above FTP can be obtained by VAM as follows:

Now using the Step 1 of the VAM calculate the difference for each row and column.

<table>
<thead>
<tr>
<th>Destinations</th>
<th>Supply</th>
<th>Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>D2</td>
<td>D3</td>
</tr>
<tr>
<td>O1</td>
<td>(3,7,11, 15,19,24)</td>
<td>(13,18,23, 28,33,40)</td>
</tr>
<tr>
<td>O2</td>
<td>(16,19,24, 29,34,39)</td>
<td>(3,5,7, 9,10,12)</td>
</tr>
<tr>
<td>O3</td>
<td>(11,14,17, 21,25,30)</td>
<td>(7,9,11, 14,18,22)</td>
</tr>
<tr>
<td>Demand</td>
<td>(3,4,5, 6,8,10)</td>
<td>(3,5,7, 9,12,15)</td>
</tr>
<tr>
<td>Diff.</td>
<td>6.38</td>
<td>5.56</td>
</tr>
</tbody>
</table>

Using the step 2 identify the highest difference. In this case it occurs at column 4. Now allocate the maximum possible units to the minimum cost position (3, 4) and write the remaining in row 1. After removing the first column and then by repeating the steps 1 and 2, the highest difference occurs at second row. Now allocate the maximum possible units to the minimum cost position (2, 2) and write the remaining in column 3. After removing the second row repeats the step 1, we obtain the table given below.

<table>
<thead>
<tr>
<th>Destinations</th>
<th>Supply</th>
<th>Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>D2</td>
<td>D3</td>
</tr>
<tr>
<td>O1</td>
<td>(3,4,5, 6,8,10)</td>
<td>-</td>
</tr>
<tr>
<td>O2</td>
<td>-</td>
<td>(3,5,7, 9,12,15)</td>
</tr>
<tr>
<td>O3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Demand</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diff.</td>
<td>13.6</td>
<td>-</td>
</tr>
</tbody>
</table>

In the above Table 2 the highest difference occurs at first column. Now allocate the maximum possible units (3,4,5,6,8,10) to the minimum cost position (1,1) and write the remaining in row 1. After removing the first column and then by repeating the step 1 and step 2, the highest difference occurs at second row. Now allocate the maximum possible units (-9,-4,2,7,14,22) to the minimum cost position (2,3) and write the remaining in column 3. After removing the second row repeats the step 1, we obtain the following table.

<table>
<thead>
<tr>
<th>Destinations</th>
<th>Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>(3,4,5, 6,8,10)</td>
</tr>
<tr>
<td>O2</td>
<td>(3,5,7, 9,12,15)</td>
</tr>
<tr>
<td>O3</td>
<td>-</td>
</tr>
<tr>
<td>Demand</td>
<td>-</td>
</tr>
</tbody>
</table>

Therefore, the fuzzy IBFS in terms of HFNs for the given FTP is given by,

\[\tilde{x}_{ij} \approx (3,4,5,6,8,10) , \tilde{x}_{13} \approx (-16,-7,2,9,17,25) , \]
\[\tilde{x}_{4j} \approx (-3,1,5,8,12,17) , \tilde{x}_{23} \approx (3,5,7,9,12,15) , \]
\[\tilde{x}_{33} \approx (-9,-4,2,7,14,22) , \tilde{x}_{34} \approx (9,11,13,15,18,20) \]

And the total fuzzy transportation minimum cost is given by

\[\text{Minimize } \tilde{Z} = (3,4,5,6,8,10) (3,7,11,15,19,24)+(-16,-7,2,9,17,25) (6,13,20,28,36,45)+(-3,1,5,8,12,17) (15,20,25,31,38,45)+(-3,5,7,9,12,15) (3,5,7,9,10,12)+(-9,4,2,7,14,22) (5,7,10,13,17,21)+ (9,11,13,15,18,20) (5,7,8,11,14,17) = (-123, 31, 393, 927, 1830, 3112) \]
4.3.1 Discussions
In the above IBFS, the total fuzzy cost is \((-123,31,393,927,1830,3112)\). And the crisp value of the IBFS is 935.6. From the figure 2, the total cost varies from 375 to 950 occurs with maximum membership value.

4.4 Numerical Example
The optimum solution by fuzzy zero point method is illustrated by the following example.

<table>
<thead>
<tr>
<th>Origins</th>
<th>Destinations</th>
<th>Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>(3,7,11,15,19,24)</td>
<td>(13,18,23,28,33,40)</td>
</tr>
<tr>
<td>O2</td>
<td>(16,19,24,29,34,39)</td>
<td>(3,5,7,9,10,12)</td>
</tr>
<tr>
<td>O3</td>
<td>(11,14,17,21,25,30)</td>
<td>(7,9,11,14,18,22)</td>
</tr>
</tbody>
</table>

Solution:
Here the total fuzzy supply and the total fuzzy demand are equal. Therefore the given problem is balanced one. Now using the Step 2 and Step 3 of the fuzzy zero point method, we get the following table.

<table>
<thead>
<tr>
<th>Destinations</th>
<th>Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>(3,5,7,9,12,15)</td>
</tr>
<tr>
<td>D2</td>
<td>(3,4,5,6,8,10)</td>
</tr>
<tr>
<td>D3</td>
<td>(3,4,5,6,8,10)</td>
</tr>
<tr>
<td>D4</td>
<td>(3,4,5,6,8,10)</td>
</tr>
</tbody>
</table>

The above table does not satisfy the Step 4. Therefore using the steps 5 and 6 for the above table. And then using the Step 4 to the Step 6 of the fuzzy zero point method, we have the following allotment table.

<table>
<thead>
<tr>
<th>Destinations</th>
<th>Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>(3,4,5,6,8,10)</td>
</tr>
<tr>
<td>D2</td>
<td>(3,5,7,9,12,15)</td>
</tr>
<tr>
<td>D3</td>
<td>(3,5,7,9,12,15)</td>
</tr>
<tr>
<td>D4</td>
<td>(3,5,7,9,12,15)</td>
</tr>
</tbody>
</table>

Now using the allotment rules of the fuzzy zero point method, we have the following table.

<table>
<thead>
<tr>
<th>Destinations</th>
<th>Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>(3,5,7,9,12,15)</td>
</tr>
<tr>
<td>O2</td>
<td>(3,5,7,9,12,15)</td>
</tr>
<tr>
<td>O3</td>
<td>(3,5,7,9,12,15)</td>
</tr>
</tbody>
</table>

Hence the total minimum cost is given by

\[
\text{Minimize } \tilde{Z} = (3,4,5,6,8,10) (3,7,11,15,19,24) +
(3,5,7,9,12,15) (5,20,25,31,38,45) +
(3,5,7,9,10,12) (+9,-4,2,7,14,22) +
(3,5,7,9,12,15) (5,7,10,13,17,21) +
(2,3,4,6,7,9) (+1,-6,4,13,25,36) +
(5,7,8,11,14,17) (-184,-18,289,707,1435,2484)
\]

4.4.1. Discussions

The optimal solution of the given hexagonal fuzzy transportation problem is (-184,-18,289,707,1435,2484). And its crisp value is 713. From the above figure the total cost varies from 260 to 740 occurs with maximum membership value.

5 CONCLUSION

Recently many researchers studied on the solution of FTP with triangular fuzzy numbers and trapezoidal fuzzy numbers. In the present paper we introduced FTP with hexagonal fuzzy numbers and we obtained crisp as well as fuzzy IBFS and the optimum solution for it. The arithmetic operations on hexagonal fuzzy numbers are used to find the solutions. By introducing hexagonal fuzzy numbers instead of triangular or trapezoidal fuzzy numbers, we can reduce fuzziness in the solution. Hence, this will be helpful for decision makers who are handling logistic and supply chain problems in fuzzy environment. For future research we propose effective implementation of the hexagonal fuzzy numbers in all fuzzy problems.

REFERENCES