Operation Approaches on $\alpha-(\gamma,\beta)$-Open (closed) Mappings and γ generalized α-open sets

N.Kalaivani a, G.SaiSundaraKrishnanb *

a Department of Mathematics, Vel Tech High Tech Dr.RR Dr.RS Engineering College
Chennai, India

b Department of Applied Mathematics and Computational Sciences,
PSG College of Technology,
Coimbatore, India

Abstract

In this paper the concept of $\alpha-(\gamma,\beta)$-open (closed) mappings have been introduced and studied. Further γ-$g\alpha$-open (closed) sets, γ-αT_b space, γ-αT_d space and γ-$T_{g\alpha}$ space have been introduced and some of their basic properties are studied.

Key words: (α-γ,β)-continuous mappings, α-(γ,β)-continuous mappings, γ-$g\alpha$-open (closed) sets, γ-αT_b space, γ-αT_d space, γ-$T_{g\alpha}$ space.

1 Introduction

O.Njastad [6] introduced α-open sets in a topological space and studied some of its properties. Kasahara [3] defined the concept of an operation on topological spaces and introduced α-closed graphs of an operation. Ogata [7] called the operation α as γ operation and introduced the notion of τ_γ which is the collection of all γ-open sets in a topological space (X, τ). Further he introduced the concept of γ-T_i spaces ($i = 0, \frac{1}{2}, 1, 2$) and characterized γ-T_i spaces using the notion of γ-closed set or γ-open sets. G.Sai Sundara Krishnan and N.Kalaivani [9] introduced α-γ-open sets in topological spaces and studied some of their basic properties.

In his paper paper in section 3 we studied some properties of α-(γ,β)-continuous mappings, α-(γ,β)-homeomorphism and we introduced the notion of α-β-T_i ($i = \frac{1}{2}, 1, 2$) spaces.

In sections 4 and 5 we introduced the concept of α-(γ,β)-open and α-(γ,β)-closed mappings and characterized the mappings with α-γ-interior and α-γ-closure operators and investigated

*Email address: kalaivani.rajam@gmail.com (N.Kalaivani), g.ssk@yahoo.com (G.SaiSundaraKrishnan)
their basic properties.

In section 6 γ-gα-open sets, γ-gα- closed sets ,γ-α T_b, γ-α T_d and γ-T_gα space have been introduced and some of their properties are discussed.

2 Preliminaries

In this section we recall some of the basic Definitions and Remarks.

Definition 2.1 [6] Let (X,τ) be a topological space and A be a subset of X. Then A is said to be α-open set if A ⊆ int(cl(int(A))) and α-closed set if cl(int(cl(A))) ⊇ A.

Definition 2.2 [9] Let (X,τ) be a topological space and γ be an operation on τ. Then a subset A of X is said to be a α-γ-open set if and only if A ⊆ τγ − int(τγ − cl(τγ − int(A)))

Definition 2.3 [9] Let (X,τ) be a topological space and γ be an operation on τ. Then a subset A of X is said to be a α-γ-closed if and only if X − A is α-γ-open.

Remark 2.4 [9] Let (X,τ) be a topological space and γ be an operation on τ and A be a subset of X. Then A is α-γ-closed if and only if A ⊇ τγ − cl(τγ − cl(τγ − cl(A)))

Definition 2.5 [9] Let (X,τ) be a topological space and γ be an operation on τ and A be a subset of X. Then τα−γ-interior of A is the union of all α-γ-open sets contained in A and it is denoted by τα−γ-int(A) = ∪ {U : U is a α-γ-open set and U ⊆ A}

Definition 2.6 [9] Let (X,τ) be a topological space and γ be an operation on τ. Let A be a subset of X. Then τα−γ-closure of A is the intersection of all α-γ-closed sets containing A and it is denoted by τα−γ-cl(A) = ∩ {F : F is a α-γ-closed set and A ⊆ F}

Remark 2.7 [9] Let (X,τ) be a topological space and γ be an operation on τ. A subset A of X is said to be α-γ-generalized closed (written as α-γ g-closed set) if τα−γ-cl(A) ⊆ U whenever A ⊆ U and U is α-γ-open set in (X,τ).

Definition 2.8 [7] A mapping f : X → Y is said to be (γ,β)-continuous if for each x of X and each open set V containing f(x) there exists an open set U such that x ∈ U and f(Uγ) ⊆ Vβ.

Definition 2.9 [7] Let (X,τ) be a topological space and γ be an operation on τ. A subset A of X is said to be γ-generalized closed (written as γ-g.closed set) if clγ ⊆ U whenever A ⊆ U and U is γ-open in (X,τ).

Definition 2.10 [2] A mapping f : (X,τ) → (Y,σ) is said to be α-(γ,β)-continuous if and only if for any α-β-open set U of Y, f−1(U) is α-γ-open in X.
3 Some properties of \(\alpha-(\gamma,\beta)\)-continuous mapping and
\(\alpha-\beta-T_i\) spaces

Let \((X, \tau)\) and \((Y, \sigma)\) be two topological spaces. \(\gamma: \tau \to P(X)\) and \(\beta: \sigma \to P(Y)\) be operations on \(\tau\) and \(\sigma\) respectively.

Definition 3.1 Let \((X, \tau)\) be a topological space and \(\gamma: \tau \to P(X)\) be an operation on \(\tau\). Then a subset \(A\) of \(X\) is said to be a \(\alpha-\gamma\) neighbourhood of a point \(x \in X\) if there exists a \(\alpha-\gamma\)-open set \(U\) such that \(x \in U \subseteq A\).

Theorem 3.2 A mapping \(f: (X, \tau) \to (Y, \sigma)\) is \(\alpha-(\gamma,\beta)\)-continuous if and only if for each \(x \in X\), the inverse of every \(\alpha-\beta\)-neighbourhood of \(f(x)\) is \(\alpha-\gamma\)-neighbourhood of \(x\).

Proof: Let \(x \in X\) and \(B\) be a \(\alpha-\beta\)-neighbourhood of \(f(x)\). By Definition 3.1 there exists a \(V \in \sigma_{\alpha-\beta}(Y)\) such that \(f(x) \in V \subseteq B\). This implies that \(x \in f^{-1}(V) \subseteq f^{-1}(B)\). Since \(f\) is \(\alpha-(\gamma,\beta)\)-continuous, \(f^{-1}(V) \in \tau_{\alpha-\gamma}(X)\). Hence \(f^{-1}(B)\) is a \(\alpha-\gamma\)-neighbourhood of \(x\).

Conversely, Let \(B \in \sigma_{\alpha-\beta}\). Put \(A = f^{-1}(B)\). Let \(x \in A\). Then \(f(x) \in B\). \(B\) is a \(\alpha-\beta\)-neighbourhood of \(f(x)\). So by hypothesis, \(A = f^{-1}(B)\) is a \(\alpha-\gamma\)-neighbourhood of \(x\). Hence by Definition 3.1 there exists \(A_x \in \tau_{\alpha-\gamma}\) such that \(x \in A_x \subseteq A\). This implies that \(A = \bigcup_{x \in A} A_x\). By Theorem 3.4 \([9]\) \(A\) is \(\alpha-\gamma\)-open in \(X\). Therefore \(f\) is \(\alpha-(\gamma,\beta)\)-continuous.

Theorem 3.3 A mapping \(f: (X, \tau) \to (Y, \sigma)\) is \(\alpha-(\gamma,\beta)\)-continuous if and only if for each point \(x \in X\) and each \(\alpha-\beta\)-neighbourhood \(B\) of \(f(x)\), there is a \(\alpha-\gamma\)-neighbourhood \(A\) of \(x\) such that \(f(A) \subseteq B\).

Proof: Let \(x \in X\) and \(B\) be a \(\alpha-\beta\)-neighbourhood of \(f(x)\). Then there exists \(O_{f(x)} \in \sigma_{\alpha-\beta}\) such that \(f(x) \in O_{f(x)} \subseteq B\). It follows that \(x \in f^{-1}(O_{f(x)}) \subseteq f^{-1}(B)\). By hypothesis, \(f^{-1}(O_{f(x)}) \subseteq \tau_{\alpha-\gamma}\). Let \(A = f^{-1}(B)\). Then it follows that \(A\) is \(\alpha-\gamma\)-neighbourhood of \(x\) and \(f(A) = f(f^{-1}(B)) \subseteq B\).

Conversely, let \(U \in \sigma_{\alpha-\beta}\). Take \(W = f^{-1}(U)\). Let \(x \in W\). Then \(f(x) \in U\). Thus \(U\) is a \(\alpha-\beta\)-neighbourhood of \(f(x)\). By hypothesis, there exists a \(\alpha-\gamma\) neighbourhood \(V_x\) of \(x\) such that \(f(V_x) \subseteq U\). Thus it follows that \(x \in V_x \subseteq f^{-1}(f(V_x)) \subseteq f^{-1}(U) = W\). Since \(V_x\) is a \(\alpha-\gamma\)-neighbourhood of \(x\), which implies that there exists a \(W_x \in \tau_{\alpha-\gamma}\) such that \(x \in W_x \subseteq W\). This implies that \(W = \bigcup_{x \in W} W_x\). By Theorem 3.4 \([9]\) \(W\) is \(\alpha-\gamma\)-open in \(X\). Thus \(f\) is \(\alpha-(\gamma,\beta)\)-continuous.

Theorem 3.4 Let \(f: (X, \tau) \to (Y, \sigma)\) be a mapping. Then the following statements are equivalent:

(i) \(f\) is \(\alpha-(\gamma,\beta)\)-continuous.
(ii) \(f[\tau_{\alpha-\gamma} - cl(A)] \subseteq \sigma_{\alpha-\beta} - cl[f(A)]\) holds for every subset \(A\) of \((X, \tau)\).
(iii) For every \(\alpha-\beta\)-closed set \(V\) of \((Y, \sigma)\), \(f^{-1}(V)\) is \(\alpha-\gamma\)-closed in \((X, \tau)\).
Proof:
(i) \rightarrow (ii). Let $y \in f(\tau_{\alpha-\gamma} - cl(A))$ and V be any α-β-open set containing y. Using Theorem 3.3, then there exists a point $x \in X$ and a α-γ-open set U such that $x \in U$ with $f(x) = y$ and $f(U) \subseteq V$. Since $x \in \tau_{\alpha-\gamma} - cl(A)$, we have $U \cap A \neq \emptyset$ and hence $\phi \neq f(U \cap A) \subseteq f(U) \cap f(A) \subseteq V \cap f(A)$. This implies that $y \in \sigma_{\alpha-\beta} - cl(f(A))$. Therefore, we have $f(\tau_{\alpha-\gamma} - cl(A)) \subseteq \sigma_{\alpha-\beta} - cl(f(A))$.

(ii) \rightarrow (iii). Let V be a α-β-closed set in Y. Then $\sigma_{\alpha-\beta} - cl(V) = V$. By (ii) $f(\tau_{\alpha-\gamma} - cl(f^{-1}(V))) \subseteq \sigma_{\alpha-\beta} - cl(f(f^{-1}(V))) \subseteq \sigma_{\alpha-\beta} - cl(V) = V$ holds. Therefore $\tau_{\alpha-\gamma} - cl(f^{-1}(V)) \subseteq f^{-1}(V)$ and thus $f^{-1}(V) = \tau_{\alpha-\gamma} - cl(f^{-1}(V))$. Hence $f^{-1}(V)$ is α-γ-closed in X.

(iii) \rightarrow (i). Let B be any α-β-open set in Y. Consider $V = Y - B$. Then V is α-β-closed in Y. By (iii) $f^{-1}(V)$ is α-γ-closed in X. Hence $f^{-1}(B) = f^{-1}(Y - B) = X - f^{-1}(V)$ is α-γ-open in X. Hence f is α-(γ, β)- continuous.

Theorem 3.5 Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a α-(γ, β)- continuous mapping and injective. If Y is α-β-T_2 (resp.α-β-T_1), then X is α-γ-T_2 (resp.α-γ-T_1).

Proof: Suppose Y is α-β-T_2. Let x and y be two distinct points of X. Then, there exists two α-β-open sets U and V such that $f(x) \in U$, $f(y) \in V$ and $U \cap V = \emptyset$. Since f is α-(γ, β)- continuous, for U and V, there exist two α-γ-open sets W and S such that $x \in W$ and $y \in S$, $f(W) \subseteq U$ and $f(S) \subseteq V$, implies that $W \cap S \neq \emptyset$. Hence X is α-γ-T_2. In a similar way we can prove that X is α-γ-T_1 whenever Y is α-β-T_1.

Theorem 3.6 Let $f : (X, \tau) \rightarrow (Y, \sigma)$ and $g : (Y, \sigma) \rightarrow (Z, \delta)$ be two mappings.

(i) If f is α-(γ, β)- continuous and g is β-(δ)- continuous, then $g \circ f$ is α-(γ, δ)- continuous;

(ii) If f is α-(γ, β)- continuous and g is α-(δ)- continuous, then $g \circ f$ is α-(γ, δ)- continuous;

(iii) If f is α-(γ, β)- continuous and g is α-(β, δ)- continuous, then $g \circ f$ is α-(γ, δ)- continuous;

Proof: Follows from the Definitions 2.20[7], 4.1[2] and 6.1[2].

4 α-(γ, β)-open mappings

In this section we introduce the concept of α-(γ, β)-open mappings and study some of its basic properties.

Let (X, τ) and (Y, σ) be two topological spaces. $\gamma : \tau \rightarrow P(X)$ and $\beta : \sigma \rightarrow P(Y)$ be operations on τ and σ respectively.

Definition 4.1 A mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ is said to be α-(γ, β)-open if and only
if for each \(A \in \tau_{\alpha-\gamma}, f(A) \in \sigma_{\alpha-\beta} \).

Example 4.2 Let \(X = \{a, b, c\}, Y = \{1, 2, 3\}, \tau = \{\varphi, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}\} \) and \(\sigma = \{\varphi, Y, \{2\}, \{1, 3\}\} \). Define operations \(\gamma : \tau \to P(X) \) and \(\beta : \sigma \to P(Y) \) by \(A^\gamma = cl(A) \) for every \(A \in \tau \) and \(B^\beta = cl(B) \) for every \(B \in \sigma \).

Define \(f : (X, \tau) \to (Y, \sigma) \) by \(f(a) = 1, f(b) = 3 \) and \(f(c) = 2 \). The image of every \(\alpha-\gamma \)-open set is \(\alpha-\beta \)-open under \(f \). Hence \(f \) is \(\alpha-(\gamma, \beta) \)-open.

Remark 4.3 Every \(\alpha-(\gamma, \beta) \)-open mapping is \((\gamma, \alpha-\beta) \)-open. But the converse need not be true.

Let \(X = \{a, b, c\}, Y = \{1, 2, 3\}, \tau = \{\varphi, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}\} \) and \(\sigma = \{\varphi, Y, \{1\}, \{3\}, \{1, 2\}, \{1, 3\}\} \). Define operations \(\gamma : \tau \to P(X) \) and \(\beta : \sigma \to P(Y) \) by

\[
A^\gamma = \begin{cases} \emptyset & \text{if } A = \{a\} \\ A \cup \{c\} & \text{if } A \neq \{a\} \end{cases}
\]

\[
B^\beta = \begin{cases} cl(B) & \text{if } b \in B \\ B & \text{if } b \notin B \end{cases}
\]

Define \(f : (X, \tau) \to (Y, \sigma) \) by \(f(a) = 1, f(b) = 1 \) and \(f(c) = 2 \). The image of every \(\gamma \)-open set in \(X \) is \(\alpha-\beta \)-open in \(Y \) under \(f \). Hence \(f \) is \((\gamma, \alpha-\beta) \)-open. But the image of every \(\alpha-\gamma \)-open set is not \(\alpha-\beta \)-open. Hence \(f \) is not \(\alpha-(\gamma, \beta) \)-open.

Remark 4.4 If \(f : (X, \tau) \to (Y, \sigma) \) is said to be \(\alpha-(\gamma, \beta) \)-open and \(g : (Y, \sigma) \to (Z, \delta) \) is \(\alpha-(\beta, \delta) \)-open, then the composition \(g \circ f : (X, \tau) \to (Z, \delta) \) is \(\alpha-(\gamma, \delta) \)-open mapping.

Theorem 4.5 A mapping \(f : (X, \tau) \to (Y, \sigma) \) is \(\alpha-(\gamma, \beta) \)-open if and only if for each \(x \in X \), and for every \(A \in \tau_{\alpha-\gamma} \) such that \(x \in A \), there exists \(B \in \sigma_{\alpha-\beta} \) such that \(f(x) \in B \) and \(B \subseteq f(A) \).

Proof: Let \(A \) be a \(\alpha-\gamma \)-open set of \(x \in X \). Then \(f(x) \in f(A) \). Therefore \(f(A) \) is a \(\alpha-\beta \)-open neighbourhood of \(f(x) \) in \(Y \). Then by Theorem 3.3 there exists a \(\alpha-\gamma \)-open neighbourhood \(B \in \sigma_{\alpha-\beta} \) such that \(f(x) \in B \subseteq f(A) \).

Conversely, Let \(A \in \tau_{\alpha-\gamma} \) such that \(x \in A \). Then by assumption, there exists \(B \in \sigma_{\alpha-\beta} \) such that \(f(x) \in B \subseteq f(A) \). Therefore \(f(A) \) is a \(\alpha-\beta \)-neighbourhood of \(f(x) \) in \(Y \) and this implies that \(f(A) = \bigcup_{f(x) \in f(A)} B \). Then by Theorem 3.4 [8] \(f(A) \) is \(\alpha-\beta \)-open in \(Y \). Hence \(f \) is \(\alpha-(\gamma, \beta) \)-open.

Theorem 4.6 A mapping \(f : (X, \tau) \to (Y, \sigma) \) is \(\alpha-(\gamma, \beta) \)-open if and only if for each \(x \in X \), and for every \(\alpha-\gamma \)-neighbourhood \(U \) of \(x \in X \) there exists a \(\alpha-\beta \)-neighbourhood \(V \) of \(f(x) \in Y \) such that \(V \subseteq f(U) \).
Proof: Let U be a α-γ-neighbourhood of $x \in X$. Then by Definition 3.1 there exists a α-γ-open set W such that $x \in W \subseteq U$. This implies that $f(x) \in f(W) \subseteq f(U)$. Since f is a α-(γ, β)-open mapping, we have $f(W)$ is α-β-open. Hence $V = f(W)$ is a α-β-neighbourhood of $f(x)$ and $V \subseteq f(U)$.

Conversely, Let $U \in \tau_{a-\gamma}$ and $x \in U$. Then U is a α-γ-neighbourhood of x. So by hypothesis, there exists a α-β-neighbourhood V of $f(x)$ such that $f(x) \in V \subseteq f(U)$. That is, $f(U)$ is a α-β-neighbourhood of $f(x)$. Thus $f(U)$ is a α-β-neighbourhood of each of its points. Therefore $f(U)$ is α-β-open. Hence f is α-(γ, β)-open.

Theorem 4.7 A mapping $f : (X, \tau) \to (Y, \sigma)$ is α-(γ, β)-open if and only if $f(\tau_{a-\gamma} - \text{int}(A)) \subseteq \sigma_{a-\beta} - \text{int}(f(A))$, for all $A \subseteq X$.

Proof: Let $x \in \tau_{a-\gamma} - \text{int}(A)$. Then there exists $U \in \tau_{a-\gamma}$ such that $x \in U \subseteq A$. So $f(x) \in f(U) \subseteq f(A)$. Since f is α-(γ, β)-open, $f(U)$ is α-β-open in Y. Hence $f(x) \in \sigma_{a-\beta} - \text{int}(f(A))$. Thus $f(\tau_{a-\gamma} - \text{int}(A)) \subseteq \sigma_{a-\beta} - \text{int}(f(A))$.

Conversely, Let $U \in \tau_{a-\gamma}$. Then by hypothesis, $f(U) = f(\tau_{a-\gamma} - \text{int}(U)) \subseteq \sigma_{a-\beta} - \text{int}(f(U)) \subseteq f(U)$ or $f(U) \subseteq \sigma_{a-\beta} - \text{int}(f(U)) \subseteq f(U)$. This implies that $f(U)$ is α-β-open. So f is α-(γ, β)-open.

Theorem 4.8 A mapping $f : (X, \tau) \to (Y, \sigma)$ is α-(γ, β)-open if and only if $\tau_{a-\gamma} - \text{int}(f^{-1}(B)) \subseteq f^{-1}(\sigma_{a-\beta} - \text{int}(B))$, for all $B \subseteq Y$.

Proof: Let B be any subset of Y. Clearly, $\tau_{a-\gamma} - \text{int}(f^{-1}(B))$ is α-γ-open in X. Also $f(\tau_{a-\gamma} - \text{int}(f^{-1}(B))) \subseteq f(f^{-1}(B)) \subseteq B$. Since f is α-(γ, β)-open and by Theorem 4.7, we have $f(\tau_{a-\gamma} - \text{int}(f^{-1}(B))) \subseteq \sigma_{a-\beta} - \text{int}(B)$. Hence $\tau_{a-\gamma} - \text{int}(f^{-1}(B)) \subseteq f^{-1}(f(\tau_{a-\gamma} - \text{int}(f^{-1}(B)))) \subseteq \sigma_{a-\beta} - \text{int}(B)$. This implies that $\tau_{a-\gamma} - \text{int}(f^{-1}(B)) \subseteq f^{-1}(\sigma_{a-\beta} - \text{int}(B))$ for all $B \subseteq Y$.

Conversely, Let $A \subseteq X$. By hypothesis, we obtain $\tau_{a-\gamma} - \text{int}(A) \subseteq \tau_{a-\gamma} - \text{int}(f^{-1}(f(A))) \subseteq f^{-1}(\sigma_{a-\beta} - \text{int}(f(A)))$. This implies that $f(\tau_{a-\gamma} - \text{int}(A)) \subseteq f(\tau_{a-\gamma} - \text{int}(f^{-1}(f(A)))) \subseteq \sigma_{a-\beta} - \text{int}(f(A))$. Consequently, $f(\tau_{a-\gamma} - \text{int}(A)) \subseteq \sigma_{a-\beta} - \text{int}(f(A))$, for all $A \subseteq X$. By Theorem 4.7, f is α-(γ, β)-open.

Theorem 4.9 A mapping $f : (X, \tau) \to (Y, \sigma)$ is α-(γ, β)-open if and only if $f^{-1}(\sigma_{a-\beta} - \text{cl}(B)) \subseteq \tau_{a-\gamma} - \text{cl}(f^{-1}(B))$, for all $B \subseteq Y$.

Proof: Let B be any subset of Y. By theorem 4.8 $\tau_{a-\gamma} - \text{int}(f^{-1}(Y - B)) \subseteq f^{-1}(\sigma_{a-\beta} - \text{int}(Y - B))$. Then $\tau_{a-\gamma} - \text{int}(X - f^{-1}(B)) \subseteq f^{-1}(\sigma_{a-\beta} - \text{int}(Y - B))$. As $\sigma_{a-\beta} - \text{int}(B) = Y - \sigma_{a-\beta} - \text{cl}(Y - B)$, therefore $X - \tau_{a-\gamma} - \text{cl}(f^{-1}(B)) \subseteq X - f^{-1}(Y - \sigma_{a-\beta} - \text{cl}(B))$ or $X - \tau_{a-\gamma} - \text{cl}(f^{-1}(B)) \subseteq X - f^{-1}(\sigma_{a-\beta} - \text{cl}(B))$. Hence $f^{-1}(Y - \sigma_{a-\beta} - \text{cl}(B)) \subseteq f^{-1}(Y - \sigma_{a-\beta} - \text{cl}(B))$.

Conversely, Let $B \subseteq Y$. By hypothesis, $f^{-1}(\sigma_{a-\beta} - \text{cl}(Y - B)) \subseteq \tau_{a-\gamma} - \text{cl}(f^{-1}(Y - B))$. Then
\[X - \tau_{\alpha\gamma} - \text{cl}(f^{-1}(Y - B)) \subseteq X - f^{-1}(\sigma_{\alpha\beta} - \text{cl}(Y - B)). \] Hence \(X - \tau_{\alpha\gamma} - \text{cl}(f^{-1}(B)) \subseteq f^{-1}(Y - \sigma_{\alpha\beta} - \text{cl}(Y - B)). \) This gives that \(\tau_{\alpha\gamma} - \text{int}(f^{-1}(B)) \subseteq f^{-1}(\sigma_{\alpha\beta} - \text{int}(B)). \) Using Theorem 4.8, it follows that \(f \) is \(\alpha-(\gamma, \beta) \)-open.

Theorem 4.10 Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) and \(g : (Y, \sigma) \rightarrow (Z, \zeta) \) be two mappings such that \(g \circ f : (X, \tau) \rightarrow (Z, \delta) \) be \(\alpha-(\gamma, \beta) \)-continuous mapping. Then

(i) If \(f \) is \(\alpha-(\beta, \delta) \)-open injection then \(f \) is \(\alpha-(\beta, \delta) \)-continuous;

(ii) If \(f \) is \(\alpha-(\gamma, \beta) \)-open surjection then \(g \) is \(\alpha-(\beta, \delta) \)-continuous;

Proof:

(i) Let \(U \in \sigma_{\alpha\beta} \). Since \(g \) is \(\alpha-(\beta, \delta) \)-open, then \(g(U) \in \zeta_{\alpha\delta} \). Since \(g \) is injective and \(g \circ f \) is \(\alpha-(\gamma, \delta) \)-continuous, we have \((g \circ f)^{-1}(g(U)) = (f^{-1} \circ g^{-1})(g(U)) = f^{-1}(g^{-1}g(U)) = f^{-1}(U) \) is \(\alpha-\gamma \)-open in \(X \). This proves that \(f \) is \(\alpha-(\gamma, \beta) \)-continuous.

(ii) Let \(V \in \zeta_{\alpha\delta} \). Since \(g \circ f \) is \(\alpha-(\gamma, \delta) \)-continuous, then \((g \circ f)^{-1}(V) \in \tau_{\alpha\gamma}(X) \). Also \(f \) is \(\alpha-(\gamma, \beta) \)-open, so \(f((g \circ f)^{-1}(V)) \) is \(\alpha-\beta \)-open in \(Y \). Since \(f \) is surjective, we obtain \((f \circ (g \circ f)^{-1})(V) = (f \circ f^{-1} \circ g^{-1})(V) = ((f \circ f^{-1}) \circ g^{-1})(V) = g^{-1}(V) \). It follows that \(g^{-1}(V) \in \sigma_{\alpha\beta} \). This proves that \(g \) is \(\alpha-(\beta, \delta) \)-continuous mapping.

5 \(\alpha-(\gamma, \beta) \)-closed mappings

In this section we introduce the concept of \(\alpha-(\gamma, \beta) \)-closed mappings and study some of its basic properties.

Let \((X, \tau)\) and \((Y, \sigma)\) be two topological spaces. \(\gamma : \tau \rightarrow P(X) \) and \(\beta : \sigma \rightarrow P(Y) \) be operations on \(\tau \) and \(\sigma \) respectively.

Definition 5.1 A mapping \(f : (X, \tau) \rightarrow (Y, \sigma) \) is said to be \(\alpha-(\gamma, \beta) \)-closed if and only if the image set \(f(A) \) is \(\alpha-\beta \)-closed for each \(\alpha-\gamma \)-closed subset \(A \) of \(X \).

Example 5.2 Let \(X = \{a, b, c\} \), \(Y = \{1, 2, 4\} \), \(\tau = \{\varnothing, X, \{a\}, \{c\}, \{a,b\}, \{a,c\}\} \) and \(\sigma = \{\varnothing, Y, \{1\}, \{4\}, \{1,2\}, \{1,4\}\} \). Define Operations \(\gamma : \tau \rightarrow P(X) \) and \(\beta : Y \rightarrow P(Y) \) by

\[
A^\gamma = \begin{cases}
A & \text{if} A = \{a\} \\
A \cup \{c\} & \text{if} A \neq \{a\}
\end{cases}
\]

\[
B^\beta = \begin{cases}
\text{cl}(B) & \text{if} b \in B \\
B & \text{if} b \notin B
\end{cases}
\]

Define \(f : (X, \tau) \rightarrow (Y, \sigma) \) by \(f(a) = 1, f(b) = 2 \) and \(f(c) = 2 \). The image of every \(\alpha-\gamma \)-closed set in \(X \) is \(\alpha-\beta \)-closed in \(Y \) under \(f \). Hence \(f \) is \(\alpha-(\gamma, \beta) \)-closed.

Remark 5.3 Every \(\alpha-(\gamma, \beta) \)-closed mapping is \((\gamma, \alpha-\beta) \)-closed. But the converse need not be true.
Define Operations \(\gamma : \tau \rightarrow P(X) \) and \(\beta : Y \rightarrow P(Y) \) by

\[
A^\gamma = \begin{cases}
A & \text{if } b \notin A \\
\text{cl}(A) & \text{if } b \in A
\end{cases}
\]

\[
B^\beta = \begin{cases}
\text{cl}(B) & \text{if } b \notin B \\
B \cup \{c\} & \text{if } b \in B
\end{cases}
\]

Define \(f : (X, \tau) \rightarrow (Y, \sigma) \) by \(f(a) = 1 \), \(f(b) = 3 \) and \(f(c) = 2 \). \(f \) is (\(\gamma \), \(\alpha \)-\(\beta \))-closed but not \(\alpha-(\gamma, \beta) \)-closed.

Remark 5.4 Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) is \(\alpha-(\gamma, \beta) \)-closed and \(g : (Y, \sigma) \rightarrow (Z, \zeta) \) is \(\alpha-(\beta, \delta) \)-closed, then \(g \circ f : (X, \tau) \rightarrow (Z, \delta) \) be \(\alpha-(\gamma, \delta) \)-closed.

Definition 5.5 A mapping \(f : (X, \tau) \rightarrow (Y, \sigma) \) is said to be \(\alpha-(\gamma, \beta) \)-homeomorphism if \(f \) is bijective, \(\alpha-(\gamma, \beta) \)-continuous and \(f^{-1} \) is \(\alpha-(\gamma, \beta) \)-homeomorphism.

Remark 5.6 From the definitions 6.1[3] and 5.1 every bijective, \(\alpha-(\gamma, \beta) \)-continuous and \(\alpha-(\gamma, \beta) \)-closed map is \(\alpha-(\gamma, \beta) \)-homeomorphism.

Theorem 5.7 A mapping \(f : (X, \tau) \rightarrow (Y, \sigma) \) is \(\alpha-(\gamma, \beta) \)-closed if and only if \(\sigma_{\alpha-\beta} - \text{cl}(f(A)) \subseteq f(\tau_{\alpha-\gamma} - \text{cl}(A)) \), for every subset \(A \) of \(X \).

Proof: Suppose \(f \) is \(\alpha-(\gamma, \beta) \)-closed and let \(A \subseteq X \). Then \(f(\tau_{\alpha-\gamma} - \text{cl}(A)) \) is \(\alpha-\beta \)-closed in \(Y \). Since \(f(A) \subseteq f(\tau_{\alpha-\gamma} - \text{cl}(A)) \), we obtain \(\sigma_{\alpha-\beta} - \text{cl}(f(A)) \subseteq f(\tau_{\alpha-\gamma} - \text{cl}(A)) \).

Conversely, suppose \(A \) is a \(\alpha-\gamma \)-closed set in \(X \). By hypothesis, we obtain \(f(A) \subseteq \sigma_{\alpha-\beta} - \text{cl}(f(A)) \subseteq f(\tau_{\alpha-\gamma} - \text{cl}(A)) = f(A) \). Hence \(f(A) = \sigma_{\alpha-\beta} - \text{cl}(f(A)) \). Thus \(f(A) \) is \(\alpha-\beta \)-closed set in \(Y \). This proves that \(f \) is \(\alpha-(\gamma, \beta) \)-closed.

Theorem 5.8 A mapping \(f : (X, \tau) \rightarrow (Y, \sigma) \) is \(\alpha-(\gamma, \beta) \)-closed if and only if \(\sigma_{\beta} - \text{cl}(\sigma_{\beta} - \text{int}(\sigma_{\beta} - \text{cl}(f(A)))) \subseteq f(\tau_{\alpha-\gamma} - \text{cl}(A)) \), for every subset \(A \) of \(X \).

Proof: Suppose \(f \) is \(\alpha-(\gamma, \beta) \)-closed and let \(A \subseteq X \). Then \(f(\tau_{\alpha-\gamma} - \text{cl}(A)) \) is \(\alpha-\beta \)-closed in \(Y \). This implies that \(\sigma_{\beta} - \text{cl}(\sigma_{\beta} - \text{int}(\sigma_{\beta} - \text{cl}(f(\tau_{\alpha-\gamma} - \text{cl}(A)))))) \subseteq f(\tau_{\alpha-\gamma} - \text{cl}(A)) \). Then \(\sigma_{\beta} - \text{cl}(\sigma_{\beta} - \text{int}(\sigma_{\beta} - \text{cl}(f(A)))) \subseteq \sigma_{\beta} - \text{cl}(\sigma_{\beta} - \text{cl}(f(\tau_{\alpha-\gamma} - \text{cl}(A)))) \) gives \(\sigma_{\beta} - \text{cl}(\sigma_{\beta} - \text{int}(\sigma_{\beta} - \text{cl}(f(A)))) \subseteq f(\tau_{\alpha-\gamma} - \text{cl}(A)) \).

Conversely, Suppose \(A \) is a \(\alpha-\gamma \)-closed set in \(X \). Then by hypothesis, \(\sigma_{\beta} - \text{cl}(\sigma_{\beta} - \text{int}(\sigma_{\beta} - \text{cl}(f(A)))) \subseteq f(\tau_{\alpha-\gamma} - \text{cl}(A)) \). Since \(A \) is \(\alpha-\gamma \)-closed, we obtain \(f(\tau_{\alpha-\gamma} - \text{cl}(A)) \subseteq f(A) \). Hence \(f(A) \) is \(\alpha-\beta \)-closed in \(Y \). This implies that \(f \) is \(\alpha-(\gamma, \beta) \)-closed.

Theorem 5.9 A mapping \(f : (X, \tau) \rightarrow (Y, \sigma) \) is \(\alpha-(\gamma, \beta) \)-closed if and only if for each
subset B of Y and each \(\alpha\)-\(\gamma\)-open set A in X containing \(f^{-1}(B)\), there exists a \(\alpha\)-\(\beta\)-open set C in Y containing B such that \(f^{-1}(C) \subseteq A\).

proof: Let C = Y - f(X - A). Then \(f(X - A) \subseteq Y - B\). Since f is \(\alpha\)-\(\gamma\),\(\beta\)-closed , then C is \(\alpha\)-\(\beta\)-open and \(f^{-1}(C) = X - f^{-1}(f(X - A)) \subseteq X - (X - A) = A\). Conversely, suppose F is a \(\alpha\)-\(\gamma\)-closed set in X. Let B = Y - f(F). Then \(f^{-1}(B) \in X - f^{-1}(f(F)) \subseteq X - F\) and X - F is \(\alpha\)-\(\gamma\)-open in X. Hence by hypothesis, there exists a \(\alpha\)-\(\beta\)-open set C containing y such that \(f^{-1}(C) \subseteq X - F\). Then we have \(f^{-1}(C) \cap F = \phi\) and \(C \cap f(F) = \phi\). Therefore \(Y - f(F) \supseteq C \supseteq B = Y - f(F)\) and f(F) is \(\alpha\)-\(\beta\)-closed in Y. This proves that f is \(\alpha\)-\(\gamma\),\(\beta\)-closed.

Theorem 5.10 Let \(f : (X, \tau) \to (Y, \sigma)\) be a bijective mapping. Then the following are equivalent:

(i) \(f\) is \(\alpha\)-\(\gamma\),\(\beta\)-closed.

(ii) \(f\) is \(\alpha\)-\(\gamma\),\(\beta\)-open.

(iii) \(f^{-1}\) is \(\alpha\)-\(\gamma\),\(\beta\)-continuous.

Proof (i) \(\Rightarrow\) (ii) Follows from the Definitions 7.1 and 8.1.

(ii) \(\Rightarrow\) (iii) Let A be a \(\alpha\)-\(\gamma\)-closed set in X. Then \(\tau_{\alpha} \gamma \subseteq A\). By condition (ii) and by Theorem 4.9, \(f^{-1}(\sigma_{\alpha} \gamma - cl(f(A))) \subseteq \tau_{\alpha} \gamma - cl(f^{-1}(f(A)))\) implies that \(\sigma_{\alpha} \gamma - cl(f(A)) \subseteq f(\tau_{\alpha} \gamma - cl(A))\). Thus \(\sigma_{\alpha} \gamma - cl((f^{-1})^{-1}(A)) \subseteq (f^{-1})^{-1}(A)\), for every subset A of X, it follows that \(f^{-1}\) is \(\alpha\)-\(\gamma\),\(\beta\)-continuous.

(iii) \(\Rightarrow\) (i). Let A be a \(\alpha\)-\(\gamma\)-closed set in X. Then X - A is \(\alpha\)-\(\gamma\)-open in X. Since \(f^{-1}\) is \(\alpha\)-\(\gamma\),\(\beta\)-continuous, \((f^{-1})^{-1}(X - A)\) is \(\alpha\)-\(\beta\)-open set in Y. But \((f^{-1})^{-1}(X - A)) = f(X - A) = Y - f(A)\). Thus f(A) is \(\alpha\)-\(\beta\)-closed in Y. This proves that f is \(\alpha\)-\(\gamma\),\(\beta\)-closed.

Definition 5.11 Let id: \(\tau \to P(X)\) be the identity operation. A mapping \(f : (X, \tau) \to (Y, \sigma)\) is said to be \(\alpha\)-\(\beta\)-closed if for any \(\alpha\)-closed set F of X, f(F) is \(\alpha\)-\(\beta\)-closed in Y.

Definition 5.12 If \(f\) is bijective mapping and \(f^{-1} : (Y, \sigma) \to (X, \tau)\) is \(\alpha\)-\(\beta\)-continuous , then f is \(\alpha\)-\(\beta\)-closed.

Proof: Follows from the Definitions 6.1[2], 5.1 and 5.5.

Theorem 5.13 Suppose that f is \(\alpha\)-\(\gamma\),\(\beta\)-continuous mapping and A is \(\alpha\)-\(\gamma\),\(\beta\)-closed. Then

(i) For every \(\alpha\)-\(\gamma\) g-closed set A of \((X, \tau)\) the image f(A) is \(\alpha\)-\(\beta\) g-closed.

(ii) For every \(\alpha\)-\(\beta\) g-closed set B of \((Y, \sigma)\), the set \(f^{-1}(B)\) is \(\alpha\)-\(\gamma\) g-closed.
Proof: (i) Let V be any α-β-open set in Y such that $f(A) \subseteq V$. By using Theorem 3.3 $f^{-1}(V)$ is a α-γ-open set containing A. Therefore by assumption we have $\tau_{\alpha-\gamma} - cl(A) \subseteq f^{-1}(V)$, so $f((\tau_{\alpha-\gamma} - cl(A))) \subseteq V$. Since f is α-(γ, β)-closed, $f((\tau_{\alpha-\gamma} - cl(A)))$ is a α-β-closed set containing f(A), implies that $\sigma_{\alpha-\beta} - cl(f(A)) \subseteq \sigma_{\alpha-\beta} - cl(f(f_{\alpha-\gamma} - cl(A)))) = f((\tau_{\alpha-\gamma} - cl(A))) \subseteq V$. Hence f(A) is α-β g-closed.

(ii) Let U be a α-γ-open set of (X, τ) such that $f^{-1}(B) \subseteq U$ for any subset B in Y. Put $F = \tau_{\alpha-\gamma} - cl(f^{-1}(B)) \cap (X - U)$. It follows from remark 3.23 (ii) [8] and Theorem 3.4 [9] that F is α-γ-closed set A in (X, τ). Since f is α-(γ, β)-closed, f(F) is α-β-closed in (Y, σ). By using Theorem 4.8 [9], Theorem 3.4 (ii) and the following inclusion $f(F) \subseteq \sigma_{\alpha-\beta} - cl(B) - B$, it is obtained that $f(F) = \phi$, and hence $F = \phi$. This implies that $\tau_{\alpha-\gamma} - cl(f^{-1}(B)) \subseteq U$. Therefore $f^{-1}(B)$ is α-γ g-closed.

Theorem 5.14 Let f : (X, τ) → (Y, σ) is α-(γ, β)-continuous and α-(γ, β) closed. Then

(i) If f is injective and (Y, σ) is α-β-$T_{\frac{1}{2}}$ then (X, τ) is α-γ-$T_{\frac{1}{2}}$ space.

(ii) If f is surjective and (X, τ) is α-γ-$T_{\frac{1}{2}}$ then (Y, σ) is α-β-$T_{\frac{1}{2}}$ space.

Proof: (i) Let A is α-γ g-closed set in (X, τ). Then by Theorem 5.13 (i) f(A) is α-β g-closed. Therefore by assumption A is α-γ-closed in (X, τ). Therefore (X, τ) is α-γ-$T_{\frac{1}{2}}$ space.

(ii) Let B be α-β g-closed set in (Y, σ). Then it follows from Theorem 5.13 (ii) and the assumption that $f^{-1}(B)$ is α-γ-closed. Hence f is α-(γ, β)-closed map, implies that $f(f^{-1}(B)) = B$ is α-γ-closed in (Y, σ). Therefore (Y, σ) is α-β-$T_{\frac{1}{2}}$.

Theorem 5.15 Let f : (X, τ) → (Y, σ) is α-(γ, β)-homeomorphism. If (X, τ) is α-γ-$T_{\frac{1}{2}}$ then (Y, σ) is α-β-$T_{\frac{1}{2}}$.

Proof: Let {y} be a singleton set of (Y, σ). Then there exists a point x of X such that y = f(x). By Theorem 4.10[9], it follows that the singleton set {y} is α-β-open or α-β-closed. Therefore (Y, σ) is α-β-$T_{\frac{1}{2}}$ space.

Theorem 5.16 Let f : (X, τ) → (Y, σ) is α-(γ, β)-continuous, injective mapping. If (Y, σ) is α-β-T_1 space (respectively α-β-T_2) then (X, τ) is α-γ-T_1 space (respectively α-γ-T_2).

Proof: Suppose (Y, σ) is α-β-T_2 space and x, y be two distinct points in X. Then there exists two α-β-open sets V and W of Y such that f(x) ∈ V and f(y) ∈ W and $V \cap W = \phi$. Since, f is α-(γ, β)-continuous for V and W there exists two α-γ-open sets U and S such that x ∈ U and y ∈ S and f(U) ⊆ V and f(S) ⊆ W. Therefore $U \cap S = \phi$. Hence (X, τ) is α-γ-T_2 space. The proof of the case α-γ-T_1 is proved similarly.

Definition 5.17 If $\gamma : \tau \rightarrow P(X)$ is a regular operation then X is a α-γ-$T_{\frac{1}{2}}$ space.
Proof: By proposition 2.9 [7], we have (X, τ_γ) is a topological space. To prove X is α-γ-T_2 space, it is enough to show that $\{x\}$ is α-γ-open or α-γ-closed.

Case (i): Suppose $\{x\} \in \tau_\gamma$, then by Theorem 3.17[9] $\{x\}$ is α-γ-open.

Case (ii): Suppose $\{x\} \notin \tau_\gamma$, then $\tau_\gamma - \text{int}(\tau_\gamma - \text{cl}(\tau_\gamma - \text{int}({\{x\}}))) = \tau_\gamma - \text{cl}(\phi) = \phi \subseteq \{x\}$. Hence $\{x\}$ is α-γ-closed.

Definition 5.18 Let (X, τ) be a topological space and γ be an operation on τ. Then a subset A of X is said to be α-γ generalized open set (α-γ-g-open set) if $F \subseteq \tau_\gamma - \text{int}(A)$ whenever $F \subseteq A$ and F is α-γ-closed in (X, τ). A subset A of X is said to be α-γ g-closed if $X - A$ is α-γ g-open.

The family of all α-γ generalized open set in (X, τ) is denoted by $\tau_{\alpha-\gamma}$-g-open set and the family of all α-γ generalized closed set in (X, τ) is denoted by $\tau_{\alpha-\gamma}$-g-closed set.

Remark 5.19 The union of two disjoint α-γ g-closed set need not be a α-γ g-closed set.

Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$, define an operation γ on τ such that

$$A^\gamma = \begin{cases} \text{cl}(A) & \text{if } b \in A \\ A & \text{if } b \notin A \end{cases}$$

then $\tau_{\alpha-\gamma} = \{\phi, X, \{a\}, \{b\}, \{a, c\}, \{b, c\}\}$, α-γ g-closed set = $\{\phi, X, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}$. $A = \{a\}$ and $B = \{b\}$ are α-γ g-closed sets but $A \cup B = \{a, b\}$ is not a α-γ g-closed set.

6 γ-g α-open sets

Definition 6.1 Let (X, τ) be a topological space and γ be an operation on τ. Then a subset A of X is said to be γ generalized α-open set (γ-g α-open set) if $F \subseteq \tau_{\alpha-\gamma} - \text{int}(A)$ whenever $F \subseteq A$ and F is γ-closed in (X, τ). A subset A of X is said to be γ-g α-closed if $X - A$ is γ-g α-open.

Theorem 6.2 Let (X, τ) be a topological space and γ be an operation on τ. Then a subset A of X is said to be γ-g α-closed set if and only if $\tau_{\alpha-\gamma} - \text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is γ-open in (X, τ).

Proof: Proof follows from the Definition 6.1 and the results $\tau_{\alpha-\gamma} - \text{int}(A) = X - \tau_{\alpha-\gamma} - \text{cl}(A)$, $\tau_{\alpha-\gamma} - \text{cl}(A) = X - \tau_{\alpha-\gamma} - \text{int}(A)$

Remark 6.3 From the Definitions 4.6 [9], 5.18 and 6.1 have the following digrammatic implications:
Remark 6.4 The union of two disjoint γ-g α-closed sets need not be a γ-g α-closed set.

Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$, define an operation γ on τ such that

$$A^\gamma = \begin{cases} cl(A) & \text{if } b \notin A \\ A & \text{if } b \in A \end{cases}$$

Then $\tau_{\alpha-\gamma} = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. α-g closed set = $\{\phi, X, \{b\}, \{c\}, \{a, c\}\}$. $A = \{b\}$ and $B = \{c\}$ are α-g closed sets. But $A \cup B = \{b, c\}$ is not a α-g closed set.

Theorem 6.5 Let (X, τ) be a topological space and γ be an operation on τ. If A is γ-open and γ-g α-closed set in (X, τ), then A is α-γ-closed.

Proof: Since A is γ-open and γ-g α-closed , $\tau_{\alpha-\gamma} - cl(A) \subseteq A$ and hence $\tau_{\alpha-\gamma} - cl(A) = A$. This implies that A is α-γ-closed.

Theorem 6.6 Let (X, τ) be a topological space and γ be an operation on τ. If A is γ-g α-closed set in (X, τ), then $\tau_{\alpha-\gamma} - cl(A) - A$ does not contain any nonempty γ-closed set.

Proof: Let F be a γ-closed sub set of $\tau_{\alpha-\gamma} - cl(A) - A$. This implies that $A \subseteq (X - F)$. Since A is γ-g α-closed and $X - F$ is γ-open, implies $\tau_{\alpha-\gamma} - cl(A) \subseteq (X - F)$. Therefore we have $F \subseteq (X - \tau_{\alpha-\gamma} - cl(A)) \cap (\tau_{\alpha-\gamma} - cl(A)) = \phi$. Hence $F = \phi$.

Theorem 6.7 Let (X, τ) be a topological space and γ be an operation on τ. Then for each $x \in X$, $\{x\}$ is γ-closed or $X - \{x\}$ is γ-g α-closed in (X, τ).
Proof: Suppose \(\{x\} \) is not \(\gamma \)-closed. Then \(X - \{x\} \) is not a \(\gamma \)-open set. Therefore \(X \) is the only \(\gamma \)-open set containing \(X - \{x\} \). Hence we have \(\tau_{\alpha - \gamma} - cl(X - \{x\}) \subseteq X \). This implies \(X - \{x\} \) is \(\gamma \)-\(\alpha \)-closed.

Theorem 6.8 Let \((X, \tau)\) be a topological space and \(\gamma \) be a regular operation on \(\tau \). Then the following are equivalent:

(i) Every \(\gamma \)-\(\alpha \)-closed set of \((X, \tau)\) is \(\alpha \)-\(\gamma \)-closed.

(ii) For each \(x \in X \), \(\{x\} \) is \(\gamma \)-closed or \(\alpha \)-\(\gamma \)-open in \((X, \tau)\).

(iii) \((X, \tau)\) is \(\alpha \)-\(\gamma \)-\(T_{1/2} \)-space.

Proof:

(i) \(\rightarrow \) (ii) Suppose that for \(x \in X \), \(\{x\} \) is not \(\gamma \)-closed. By Theorem 6.7, \(X - \{x\} \) is a \(\gamma \)-\(\alpha \)-closed set. Therefore by assumption \(X - \{x\} \) is \(\alpha \)-\(\gamma \)-closed. Hence \(\{x\} \) is \(\alpha \)-\(\gamma \)-open.

(ii) \(\rightarrow \) (iii) By Theorem 6.7 \(X - \{x\} \) is \(\gamma \)-\(\alpha \)-closed, using Theorem 4.6 [8] and 4.10[8], \((X, \tau)\) is \(\alpha \)-\(\gamma \)-\(T_{1/2} \)-space.

(iii) \(\rightarrow \) (i) By Theorem 6.5.

Definition 6.9 A topological space \((X, \tau)\) is said to be \(\gamma \)-\(\alpha \) \(T_b \) space (respectively \(\gamma \)-\(\alpha \) \(T_d \) space) if every \(\gamma \)-\(\alpha \)-closed set is \(\gamma \)-closed (respectively \(\gamma \)-\(g \)-closed).

Theorem 6.10

(i) If \((X, \tau)\) is \(\gamma \)-\(\alpha \) \(T_b \), then for each \(x \in X \), \(\{x\} \) is \(\alpha \)-\(\gamma \)-closed or \(\gamma \)-open.

(ii) If \((X, \tau)\) is \(\gamma \)-\(\alpha \) \(T_d \), then for each \(x \in X \), \(\{x\} \) is \(\gamma \)-closed or \(\gamma \)-\(g \)-open.

Proof:

(i) Suppose that for \(x \in X \), \(\{x\} \) is not \(\alpha \)-\(\gamma \)-closed, then by Theorem 6.7, \(X - \{x\} \) is \(\gamma \)-\(\alpha \)-closed. Therefore, by assumption \(X - \{x\} \) is \(\gamma \)-closed. Hence \(\{x\} \) is \(\gamma \)-open.

(ii) Suppose that, for \(x \in X \), \(\{x\} \) is not \(\gamma \)-closed. Then by Theorem 6.7 and by the assumption it follows that \(X - \{x\} \) is \(\gamma \)-\(\alpha \)-closed and \(X - \{x\} \) is \(\gamma \)-g-closed. Hence \(\{x\} \) is \(\gamma \)-g-open.

Remark 6.11 Let \((X, \tau)\) be a topological space and \(\gamma \) be a regular operation on \(\tau \). Then every \(\gamma \)-\(\alpha \) \(T_b \) space is \(\gamma \)-\(\alpha \) \(T_d \) and \(\alpha \)-\(\gamma \)-\(T_{1/2} \)-space. However the converse need not be true.

Proof: Proof follows from the Definition 6.9 and Theorem 6.10.

Let \(X = \{a, b, c\} \), \(\tau = \{\varnothing, X, \{b\}, \{c\}, \{a, c\}, \{b, c\}\} \), define an operation \(\gamma \) on \(\tau \) such that

\[
A^\gamma = \begin{cases}
cl(A) & \text{if } b \notin A \\
A & \text{if } b \in A
\end{cases}
\]

Then \(\tau_\gamma = \{\varnothing, X, \{b\}, \{a, c\}, \{b, c\}\} \), \(\tau_{\alpha - \gamma} = \{\varnothing, X, \{b\}, \{a, c\}, \{b, c\}\} \). \((X, \tau)\) is a \(\alpha \)-\(\gamma \)-\(T_{1/2} \)-
space but not a γ-α T_b and γ-α T_d space.

Remark 6.12 From the Definition 4.6[8], Definition 6.9 and the Remark 6.11, we have the following diagram implications:

![Diagram]

A \longrightarrow B represents A implies B and
A \longrightarrow B represents A does not imply B. γ is a regular operation on τ.

Definition 6.13 A topological space (X, τ) is called γ-$T_{g\alpha}$ space if for every γ-g α-closed set is α-γ g-closed.

Remark 6.14 Let (X, τ) be a topological space and be γ a regular operation on τ. Then by Definitions 5.18, 6.1 and 6.13, every α-γ-$T_{\frac{1}{2}}$-space is γ-$T_{g\alpha}$ space.

Theorem 6.15 If $f : (X, \tau) \to (Y, \sigma)$ is (γ, β) continuous and α-(γ, β)-closed, then for every γ-g α-closed set B of (X, τ), $f(B)$ is β-g α-closed in (Y, σ).

Proof: Let A be a β-open set such that $f(B) \subseteq U$. Then $B \subseteq f^{-1}(U)$. Since f is (γ, β)-continuous and B is γ-g α-closed set, implies $\tau_{\alpha, \gamma} - cl(B) \subseteq f^{-1}(U)$ and hence $f(\tau_{\alpha, \gamma} - cl(B)) \subseteq U$. Therefore it follows from the assumption that $\tau_{\alpha, \gamma} - cl(f(B)) \subseteq f(\tau_{\alpha, \gamma} - cl(B)) \subseteq U$. Hence $f(B)$ is β-g α-closed in (Y, σ).

Theorem 6.16 Let $f : (X, \tau) \to (Y, \sigma)$ is α-(γ, β)-continuous and α-(γ, β)-closed, then for every β-g α-closed set A of (Y, σ), $f^{-1}(A)$ is γ-g α-closed in (X, τ).

Proof: Let A be a β-g α-closed set in (Y, σ). Let U be a γ-open set such that $f^{-1}(A) \subseteq U$. Since f is α-(γ, β)-continuous, $f(\tau_{\alpha, \gamma} - cl(f^{-1}(A))) \cap (X - U) \subseteq f(\tau_{\alpha, \gamma} - cl(f^{-1}(A))) \cap f(X - U) \subseteq \tau_{\alpha, \gamma} - cl(f^{-1}(A)) \cap (X - A) \subseteq \sigma_{\alpha, \gamma} - cl(A) - A$. Since f is α-$(\gamma$-$\beta)$-closed and $\sigma_{\alpha, \gamma} -$
\[cl(f^{-1}(A)) \cap (X-U) \] is a \(\alpha - \gamma \)-closed set, implies \(\sigma_{\alpha-\beta} - cl(A) - A \) contains a \(\alpha-\beta \)-closed set \[f(\tau_{\alpha-\gamma}-cl(f^{-1}(A))) \cap (X-U) \]. Hence by Theorem 4.7 [8] \[f(\tau_{\alpha-\gamma}-cl(f^{-1}(A))) \cap (X-U) = \phi \). This implies that \(f(\tau_{\alpha-\gamma}-cl(f^{-1}(A))) \cap (X-U) = \phi \), hence \(\tau_{\alpha-\gamma} - cl(f^{-1}(A)) \subseteq U \). Therefore, \(f^{-1}(A) \) is \(\gamma-g \) \(\alpha \)-closed.

Theorem 6.17 Let \(f : (X, \tau) \to (Y, \sigma) \) is a \(\alpha-(\gamma, \beta) \)-homeomorphism. If \((X, \tau) \) is a \(\gamma-T_{\gamma \alpha} \) space then \((Y, \sigma) \) is \(\beta-T_{\gamma \alpha} \) space.

Proof: Let \(F \) be a \(\beta-g \) \(\alpha \)-closed set in \((Y, \sigma) \). Then by assumption and Theorem 6.16 we have \(f^{-1}(F) \) is \(\gamma-g \) \(\alpha \)-closed. Then by Theorem 6.15 \(f(f^{-1}(F)) = F \) is \(\beta-g \) \(\alpha \)-closed. Therefore \((Y, \sigma) \) is \(\beta-T_{\gamma \alpha} \) space.

Theorem 6.18 If \((X, \tau) \) is \(\gamma-\alpha T_{b} \), \(f : (X, \tau) \to (Y, \sigma) \) is a \(\alpha-(\gamma, \beta) \)-homeomorphism and \((\gamma, \beta) \)-closed map, then \((Y, \sigma) \) is \(\beta-\alpha T_{b} \).

Proof: Let \(F \) be a \(\gamma-g \) \(\alpha \)-closed set in \((Y, \sigma) \) then by Theorem 6.16 \(f^{-1}(F) \) is \(\gamma-g \) \(\alpha \)-closed in \((X, \tau) \). Since \((X, \tau) \) is \(\gamma-\alpha T_{b} \) and \(f \) is \((\gamma, \beta) \)-closed, implies that \(f^{-1}(F) \) is \(\gamma \)-closed and hence \(f^{-1}(F) = F \) is \(\beta \)-closed in \((Y, \sigma) \). Therefore \((Y, \sigma) \) is \(\beta-\alpha T_{b} \).

References

[2] N.Kalaivani and G.Sai sundara Krishnan, Operation Approaches On (\(\alpha-\gamma, \beta \))-Continuous Mappings and \(\alpha-(\gamma, \beta) \)-Continuous Mappings(Submitted).

