Open Distance Pattern Coloring of Certain Classes of Graphs

P T Marykutty K A Germina

Abstract—Let G be a connected graph with diameter $d(G)$, $X = \{1,2,3,...,d(G)\}$ be a non-empty set of colors of cardinality $d(G)$, and let $\phi \neq M \subseteq V(G)$. Let f_M^{V} be an assignment of subsets of X to the vertices of G such that $f_M^{V}(u) = \{d(u,v), v \in M, u \neq v\}$, where $d(u,v)$ is the distance between u and v. We call f_M^{V} an M-open distance pattern coloring of G if no two adjacent vertices have the same f_M^{V} and if such an M exists for a graph G, then G is called an open distance pattern colorable (odpc) graph; the minimum cardinality of such an M if it exists, is the open distance pattern coloring number of G denoted by $\eta_M(G)$. In this paper, we study open distance pattern coloring of certain classes of graphs.

Index Terms — distance pattern coloring, open distance pattern of vertices, coloring, bipartite graphs, chain graphs, triangular snake, quadrilateral snake,

Mathematics Subject Classification: 05CXX

1 INTRODUCTION

For all terms and definitions, not defined specifically in this paper, we refer to [10] and for more about graph labeling, we refer to [12]. Unless mentioned otherwise, all graphs considered here are simple, finite and connected. Let G be a (p,q)-graph and let X, Y and Z be non-empty sets and $2^X, 2^Y$ and 2^Z be their power sets. Then, the functions $f : V(G) \rightarrow 2^X$ and $f : E(G) \rightarrow 2^Y$ are called the set assignments of vertices, edges and elements of G respectively. By a set-assignment of a graph, we mean any one of them. A set-assignment $f : V(G) \rightarrow 2^X$ is called a set-labeling or a set-valuation if it is injective. A proper coloring of a graph G is a function from the vertices of G to a set of colors such that no two adjacent vertices have the same color. The chromatic number of a graph G is the minimum number of colors required in its proper coloring. Graph coloring has been used as a model in many practical problems and has played a vital role in the development of graph theory. Using the concepts of graph coloring, distances in graphs and set-labeling of graphs, we defined the following in [7].

Definition 1.1 [6] Given a connected graph $G(V,E)$ of diameter $d(G)$, $\phi \neq M \subseteq V(G)$. Let $X = \{1,2,3,...,d(G)\}$ be nonempty set of colors of G with cardinality $d(G)$. Let be f_M^{V} an assignment of subsets of X to the vertices of G such that $f_M^{V}(u) = \{d(u,v), v \in M, u \neq v\}$, where $d(u,v)$ is the usual distance between u and v. We call f_M^{V} an M-open distance pattern coloring of G, if no two adjacent vertices have same f_M^{V} and if such an M exists for a graph G, then G is called an open distance pattern colorable graph. An open distance pattern colorable graph is usually written in short as an odpc-graph. The minimum cardinality of such a set M, if it exists, is said to the open distance pattern coloring number (odpc-number, in short) of G, denoted by $\eta_M(G)$.

It has been proved, in [6], that for any graph G $\eta_M(G) \geq 2$. Further, the following theorem has been proved in [6].

Theorem 1.2. [6] Every connected bipartite graphs are open distance pattern colorable.

In this paper, we study open distance pattern coloring of certain classes of graphs.

2 Main Results:

The graph obtained by identifying the end points of b internally disjoint paths, each of length a, is denoted in [4], by $P_{a,b}$. The following proposition establishes the open distance pattern colorability of this graph class.

Proposition 2.1 $P_{a,b}$ is open distance pattern colorable.

Proof. Let the end points of b internally disjoint paths of length a are identified at u and v. Hence, any cycle in the graph $P_{a,b}$ is of length $2a$. That is, the length of any cycle in $P_{a,b}$ is even and hence it is a bipartite graph. Therefore, by Theorem 1.2, is $o P_{a,b}$ open distance pattern colorable.
Theorem 2.2. The graph G isomorphic to n cycles C_m all of which have one edge in common is odpc if and only if $m \geq 4$.

Proof. Let $V(G) = \{u_{ij}, 1 \leq i \leq n, 1 \leq j \leq m\}$ be the vertex set of G, where u_{ij} is the vertex set of the ith copy of C_m.

Assume that $m \geq 4$. Then, we have the following cases.

Case 1: m even. G is bipartite. By theorem 1.2, G is odpc.

Case 2: m odd. Choose $M = \{u_{ij}, u_{ij+1/2}, u_{ij+1/2}\}$. Then

\[f_m^o(u) = \left\lfloor \frac{m}{2} \right\rfloor, \quad f_m^o(v) = \left\lfloor \frac{m}{2} \right\rfloor. \]

Also

\[f_m^o(u_{ij+1/2}) = f_m^o(u_{ij+1/2}) = \left\lfloor \frac{m}{2} \right\rfloor. \]

For $i = r, s$, $f_m^o(u_{ij}) = \left\lfloor \frac{m}{2} \right\rfloor + 1, i \neq j$,

\[f_m^o(u_{ij}) = \left\lfloor \frac{m}{2} \right\rfloor + 1, i \neq j. \]

From all the above cases, it is evident that no two adjacent vertices of G have the same f_m^o value. Hence, G is open distance pattern colorable.

Conversely, assume that G is open distance pattern colorable. If possible, let $m = 3$.

Then $G \cong K_2 + K_1$. Let $V(K_2) = \{v_1, v_2\}$. $V(K_n) = \{v_1, v_2, ..., v_{m+1}, v_{m+2}\}$.

If we choose any number of vertices of G to M, $f_m^o(v_1) = f_m^o(v_2) = 1$.

Therefore, G is not open distance pattern colorable. This completes the proof.

Figure 1 depicts odpc labeling of 4 copies of C_6 which have one edge in common. The vertices in M are represented by white circles in the figure.

Another interesting graph structure is the path union of a given graph G, which is defined as follows.

Definition 2.3. [12] Let $G_1, G_2, G_3, ..., G_n$ be n copies of a given graph G. The graph obtained by adding an edge from G_i to G_{i+1} for all $i = 1, 2, ..., n-1$ is called the path union of G.

We now proceed to verify the open distance pattern colorability of the path union of G in the following theorem.

Theorem 2.4. Let G be the path union of m copies ($m \geq 2$) of cycle C_n. Then, G is open pattern distance colorable except when m is even and $n = 3$.

Proof. Let G be the path-union of m copies of the cycle C_n. Consider the following cases.

Case 1: n even. Then, G can be considered as the union of even cycles and hence is a bipartite graph. Therefore, by Theorem 1.2, G is open distance pattern colorable.

Case 2: n odd. Here we have the following subcases.

Subcase 2.1: m odd. Choose the set $M = \{v_1, v_2, ..., v_{m+2}\}$. For $i = 1, 2, 3, ..., m+2$,

\[f_m^o(v_i) = f_m^o(v_i) = \left\lfloor \frac{m}{2} \right\rfloor. \]

For the vertex v_{m+2}, there are two adjacent vertices at distance diameter of the cycle. These two vertices have identical element $\left\lfloor \frac{m}{2} \right\rfloor$ in their f_m^o value. By considering distance from these two vertices to other elements in M, they differ by 1.

Hence adjacent vertices have distinct f_m^o.

Subcase 2.2: m is even and $n = 3$. Assume that $n = 3$. No vertices of the form v_i can be an element of M, since if it is so, the vertices v_{i+2}, v_{i+3} have $f_m^o(v_{i+2}) = f_m^o(v_{i+3})$ for any i. If we take any number of vertices of the form $v_i, j \neq 1$, then the vertices $v_{m/3}$ and $v_{m/3+1}$ have the same distance pattern. Therefore, G is not open distance pattern colorable if $n = 3$.

Subcase 2.3: m is even and $n \geq 5$. In this case, choose $M = \{v_1, v_{m/2}, v_{m/3}, v_{m/3+1}, ..., v_{m/3+k}, v_{m/3+k+1}\}$. Then, for $i = 1, 2, 3, ..., m$.

(a) If i is odd, then 2 is an element of $f_m^o(v_i)$, but 1 is not in $f_m^o(v_i)$. Moreover, two vertices v_i are equidistant from v_{i+1} and distance of these vertices from other elements in M differ by 1. Hence adjacent vertices have distinct f_m^o.

(b) If i is even, then 1 is an element of $f_m^o(v_i)$, but 2 is not in $f_m^o(v_i)$. Moreover, v_i for $j = \lfloor m/2 \rfloor + 1$ are equidistant from v_{i+1} and distance of these vertices from other elements in M differ by 1. Hence adjacent vertices have distinct f_m^o. This completes the proof.

Definition 2.5. [12] A triangular snake, denoted by S_{3n}, is the graph obtained from a path P_n by replacing every edge of it by a cycle C_3.

Theorem 2.6. A triangular snake S_{3n} is open distance pattern colorable if $n \neq 3$.

Proof. Let $P_n = u_0 u_1 u_2 ... u_n$. For $0 \leq i \leq n - 1$ the triangular snake S_{3n} is the graph obtained by replacing every edge of P_n by the triangle $u_{i-1} u_i u_{i+1}$. We prove the theorem in
three cases.

Case 1: When \(n = 2 \)
Choose \(M = \{ u_0, u_2 \} \). Then \(f_M^0(u_0) = \{ 1 \} \) and \(f_M^0(u_2) = \{ 1, 2 \} \). When \(n \geq 4 \). For the choice of \(M = \{ u_0, u_2, u_n \} \), we have
\[
\begin{align*}
& f_M^0(u_0) = \{ 2, d(G) \}, \\
& f_M^0(u_1) = \{ 1, d(G) - 1 \}, \\
& f_M^0(u_2) = \{ 1, 2, d(G) - 1 \}, \text{ and for } \quad 3 \leq i \leq n,
\end{align*}
\]
With this choice of \(M, S_{2n} \neq 3 \) is odpc.

Case 3: If possible let \(n = 3, S_{2n} \neq 3 \) is odpc. Label the vertices as shown in Figure 2.

If neither \(u_0 \) nor \(u_1 \) is in \(M \), then \(f_M^0(u_0) = f_M^0(u_1) \). Hence, either \(u_0 \) or \(u_1 \) must be an element of \(M \). By the same argument we see that either \(u_2 \) or \(u_n \) belongs to \(M \). Now, let \(u_0 \) and \(u_2 \) be in \(M \). Then \(f_M^0(u_0) = f_M^0(u_2) = \{ 1, 2 \} \). Irrespective of the case whether \(u_0, u_2 \) are in \(M \) or not. Since \(u_0 \) is at distance 1 from \(u_2 \) and \(u_0 \) is at distance 2 from \(u_n \), and \(u_2 \) is at a distance 1 from \(u_0 \) and \(u_n \), and at distance 2 from \(u_2 \), \(u_n \) and \(u_3 \), and \(f_M^0(u_2) = f_M^0(u_3) = \{ 1, 2 \} \) in all possible cases. Hence \(S_{2n} \neq 3 \) is not odpc.

Analogous to triangular snake, a quadrilateral snake is defined as follows:

Definition 2.7. A quadrilateral snake, denoted by \(ana_{2n} \), is the graph obtained from a path \(P_n \) by replacing every edge of it by a cycle \(C_4 \).

Theorem 2.8. A quadrilateral snake is open distance pattern colorable.

Proof. A quadrilateral snake is a graph that has only cycles of length 4 and hence is bipartite. Therefore, by Theorem 1.2, \(G \) is open distance pattern colorable.

Another interesting graph we consider is a chain graph which is defined as follows:

Definition 2.9. [1] A chain graph is a graph with blocks \(B_1, B_2, B_3, ..., B_k \) such that for every \(i, B_i \) and \(B_{i+1} \) have a common vertex in such a way that the block cut point is a path.

Definition 2.10. [15] A chain graph with \(n \) blocks and the sequence of \(n \) blocks of complete graphs \((K_{a_1}), (K_{a_2}), ..., (K_{a_n}) \) is called a Husimi Chain and is denoted by \(CH(n; (a_1, a_2, a_3, ..., a_n)) \).

If \(a_1 = a_2 = a_3 = ... = a_n = 2 \), then \(CH(n; (2, 2, 2, ..., 2)) = P_n \), a path of length \(n \geq 3 \) and if \(a_1 = a_2 = a_3 = ... = a_n = 3 \), then \(CH(n; (3, 3, 3, ..., 3)) = S_n \) a triangular snake with \(n \neq 3 \). In both cases, \(G \) is odpc, by Theorem 1.2 and Theorem 2.6 respectively. It is meaningless to say that \(P_n \) has an open distance pattern colorable for \(n \leq 2 \) and we have already proved in Theorem 2.6 that \(S_n \neq 3 \) is not odpc if \(n = 3 \). It remains to verify the other cases.

Theorem 2.11. \(G = CH(n; (a_1, a_2, a_3, ..., a_n)) \) is not an odpc-graph if \(a_i \geq 4 \) for some \(i, 1 \leq i \leq n \).

Proof. For some \(i, 1 \leq i \leq n \) assume that \(a_i \geq 4 \). Let \(u_1, u_2, u_3, ..., u_{a_i} \) be the vertices of the component \(K_{a_i} \). We consider the following cases.

Case 1: If \(K_{a_i} \) is an end component of \(G \), then exactly one vertex of \(K_{a_i} \) is common to another component \(K_{a_j} \) of \(G \). Without loss of generality, let \(u_1 \) be the vertex of \(K_{a_i} \) that is common to the component \(K_{a_j} \). Then, there are the following subcases.

Subcase 1.1: When \(u_2, u_3, ..., u_{a_i} \) are not the elements of \(M \).
In this case, for some positive integer \(k \), let \(i_1, i_2, i_3, ..., i_k \) be the set assignment \(f_M^0 \) of \(M \) with respect to \(M \). If \(u_i \in M \), for all \(2 \leq r \leq a_i \),
\[
\begin{align*}
& f_M^0(u_i) = \{ i_1, i_2, i_3, ..., i_k \} \\
& \text{That is, the adjacent vertices } u_i \text{ have the same set assignment for all } 2 \leq r \leq a_i. \text{ Hence if there exists an odpc set for the graph } G, \text{ then necessarily } u_1 \in M. \text{ Then, for positive integer } k, \text{ let } \\
& f_M^0(u_k) = \{ i_1, i_2, i_3, ..., i_k \} \\
& \text{Therefore } f_M^0(u_r) = \{ i_1 + 1, i_2 + 1, i_3 + 1, ..., i_k + 1 \} \quad 2 \leq r \leq a_i.
\end{align*}
\]

Subcase 1.2: When one of \(u_2, u_3, ..., u_{a_i} \) is in \(M \). In this case \(u_i \in M \). Without loss of generality, let \(u_2 \in M \). \(f_M^0(u_2) = \{ u_1, u_2, u_3, ..., u_{a_i} \} \). Then \(f_M^0(u_r) = \{ 1, i_1, i_2, i_3, ..., i_k \} \). If \(u_2 \in M \), let \(M \) be the left Husimi chain and \(K_{a_j} \) be the right Husimi chain of \(CH(n; (a_1, a_2, a_3, ..., a_n)) \). We can adopt the process, same as in case 1, for both the chains.

For \(1 \leq l \leq a_i \), let \(u_l \) be a vertex of \(K_{a_i} \), which is not common to any other component of \(G \). If \(f_M^0(u_l) = \{ i_1, i_2, i_3, ..., i_k \} \), \(u_l \in K_{a_i} \) with respect to odpc set \(M_i \), in left Husimi chain and if \(f_M^0(u_l) = \{ i_1, i_2, i_3, ..., i_k \} \), \(u_l \in K_{a_i} \) with respect to the odpc set \(M_i \), in the right Husimi chain. Then, \(f_M^0(u_r) \) with respect to the set \(M = M_i \cup M_j = \{ i_1, i_2, i_3, ..., i_k \} \cup \{ j_1, j_2, j_3, ..., j_l \} \). In all these cases \(M \) cannot be an odpc-set.

Acknowledgement

The first author is indebted to the University Grants Commission (UGC) for granting her Teacher Fellowship under UGC’s faculty development programme under XI plan.

References

