OSCILLATION PROPERTIES OF CERTAIN TYPES OF FIRST ORDER NEUTRAL DELAY DIFFERENCE EQUATIONS

G. GOMATHI JAWAHAR

ABSTRACT

In this paper some sufficient condition for the oscillation of first order neutral delay difference equation were obtained.

KEYWORDS:

Neutral Delay Difference Equation, Oscillation, Nonoscillation, Eventually positive.

Introduction 1.1

In this paper some sufficient condition for the oscillation of first order neutral delay difference equation of the form

\[\Delta (a_n x_n - p_n x_{n-k}) + q_n f(x_{n-\ell}) = 0, \quad n \in \mathbb{N}(n_0) \]

(1.1.1)

and

\[\Delta (x_n + p_n x_{n-k}) + q_n f(x_{n-\ell}) = 0, \quad n \in \mathbb{N}(n_0) \]

(1.1.2)

were obtained with the assumption of e the following conditions.

H1: \(\{p_n\} \) is a positive sequence.

H2: \(f \) is a continuous function such that \(uf(u) \geq 0 \).

H3: If there exists a function \(w \) such that \(w(u) > 0 \), for \(u > 0 \) and \(f(ufv) \leq w(u)f(v) \).

H4: If there exists a function \(\phi \) such that \(\phi(u) \) is increasing and \(u\phi(u) > 0 \), for \(u \neq 0 \) & \(|\phi(u + v)| \leq |f(u)f(v)| \).

1.2 Existence of Oscillatory Solutions

In this section, I obtain some sufficient condition for the oscillatory solutions of the equation (1.1.1) and (1.1.2)
Theorem 1.2.1

Assume that \(\frac{p_n}{a_{n-k}} \leq 1 \)
and \(x_n \) be an eventually positive solution of
the equation (1.1.1) and

\[y_n = (a_n x_n - p_n x_{n-k}) \].

Then eventually \(y_n > 0 \).

Proof

Let us consider \(x_n > 0, \ x_{n-1} > 0, \ x_{n-k} > 0 \) for
some \(n > n_1 \).

From the equation (1.1.1),

\[\Delta y_n = -q_n f(x_{n-1}) < 0. \]

Hence \(y_n \) is a
decreasing function.

Suppose \(y_n \) is not eventually positive, then
eventually \(y_n < 0 \).

Hence there exists \(n_2 > n_1 \) and \(M > 0 \), such
that \(y_n < -M \).

Let, \(z_n = a_n x_n > 0 \).

Then, \(z_n = y_n + p_n x_{n-k} \).

\[z_n < -M + \frac{p_n}{a_{n-k}} z_{n-k} \].

Hence \(z_n \to -\infty \), \(n \to \infty \)

as \(n \to \infty \). Which contradicts the fact that
\(z_n \) is eventually positive. Hence the proof.

Theorem 1.2.2

Assume that \(p_n, q_n > 0 \) and \(\frac{p_n}{a_{n-k}} \leq 1 \).

\[\lim_{n \to \infty} \inf \frac{q_n^* (1 + \frac{p_{n-1} a_{n-k}}{q_{n-k}})}{q_{n-k}} > 0 \],

If,

where \(q_n^* = \frac{q_n}{a_{n-1}} \), then every solution of
equation (1.1.1) is an oscillatory solution.

Proof

Let us assume the contradiction that
equation (1.1.1) has an non oscillatory
solution. Let us consider \(x_n \) is eventually
positive.

Let us consider \(x_n > 0, \ x_{n-1} > 0, \ x_{n-k} > 0 \) for
some \(n > n_1 \).

By theorem 1.2.1, \(y_n \) is eventually positive.

Also we have
\[\Delta y_n = -q_n f(x_{n-1}) \]

\[y_n = a_n x_n - p_n x_{n-k} \]

\[\Delta y_n \leq -q_n x_{n-l} \quad (1.2.1) \]

\[\Delta y_n \leq -q_n \frac{y_{n-l} + p_{n-l} x_{n-k-l}}{a_{n-l}} \]

\[\Delta y_n = -q_n \frac{y_{n-l}}{a_{n-l}} - q_n \frac{p_{n-l} x_{n-k-l}}{a_{n-l}} \]

From the equation (1.2.1),

\[\Delta y_n \leq -q_n \frac{y_{n-l} + p_{n-l} \Delta y_{n-k}}{a_{n-l}} - q_n \frac{p_{n-l} \Delta y_{n-k}}{a_{n-l} q_{n-k}} \]

Hence \(y_n \) satisfies the inequality,

\[\Delta y_n + q_n \frac{y_{n-l}}{a_{n-l}} - q_n \frac{p_{n-l} \Delta y_{n-k}}{a_{n-l} q_{n-k}} \leq 0. \]

Let \(\lambda_n = \frac{-\Delta y_n}{y_n} \), then

\[\lambda_n y_n \geq q_n \frac{y_{n-l}}{a_{n-l}} - q_n \frac{p_{n-l} \Delta y_{n-k}}{a_{n-l} q_{n-k}} \]

\[q_n^* = \frac{q_n}{a_{n-l}} \], Hence we have,

\[\lambda_n \geq q_n^* + \frac{p_{n-l} \lambda_{n-k} q_n^*}{q_{n-k}} \]

\[\text{Hence } \lim_{n \to \infty} \inf q_n^*(1 + \frac{p_{n-l} \lambda_{n-k}}{q_{n-k}}) \leq \lambda_n, \]

\[\lim_{n \to \infty} \inf q_n^*(1 + \frac{p_{n-l} \lambda_{n-k}}{q_{n-k}}) \leq 0. \]

Therefore,

Which contradicts the given condition of the theorem. Hence every solution of the equation (1.1.1) is an oscillatory solution.

Theorem 1.2.3

Suppose that
\[\text{Then } a_n = 1, \text{ for } n = 1, 2, 3, \ldots \]

\[\Delta \left(x_n + p_n x_{n-k} \right) + q_n f(x_{n-l}) = 0, n \in N(n_0) \]

is oscillatory if there exists a function \(\lambda \) such that \(0 \leq \lambda_n \leq 1 \) for \(n \geq n_0 \) and the difference inequality

\[\Delta z_n + Q_n \phi(z_{n-l+k}) \leq 0, \]

(1.2.2)

has oscillatory solution where,

\[Q_n = \min \left(\lambda_n q_n, \frac{(1 - \lambda_{n-k}) q_{n-l}}{wp_{n-l}} \right) \]

Proof
Suppose to the contrary that there is a non-oscillatory solution x_n. Assume that, $x_n > 0$, For all $n > n_0$. Let

$$y_n = x_n + p_n x_{n-k}$$

$$\Delta(y_n) = -q_n f(x_{n-i}) < 0.$$

Also $y_{n+1} < y_n$, y_n is decreasing function.,

Hence $y_{n+1} + q_n f(x_{n-i}) = y_n$

$$y_n > q_n f(x_{n-i}), n \geq n_0.$$

Taking summation from n_0 to m, $m > n_0$.

$$\sum_{n=n_0}^{m} y_n > \sum_{n=n_0}^{m} q_n f(x_{n-i})$$

$$\sum_{n=n_0}^{m} y_n > \sum_{n=n_0+k}^{m} Q_n \{f(x_{n-i}) + f(p_{n-i} x_{n-k-i})\}$$

Let $z_n = \sum_{n=n_0+k}^{m} Q_n \phi(y_{n-i}) > 0$.

Then $\Delta z_n = z_{n+1} - z_n$

$$\Delta z_n = \sum_{n=n_0}^{m} (Q_{n+1} \phi(y_{n+1-i}) - Q_n \phi(y_{n-i}))$$

$$\Delta z_n = Q_{m+1} \phi(y_{m+1-i}) - Q_{n_0+k} \phi(y_{n_0+k-i})$$

$$\Delta z_n > -Q_n \phi(y_{n-i})$$

$$\Delta z_n > -Q_n \phi(z_{n-i+k})$$

$$\Delta z_n + Q_n \phi(z_{n-i+k}) > 0.$$ This condition holds when z_n is eventually positive solution. This is a contradiction to the equation (1.2.2).
Hence the proof completes. Similarly we prove that, when x_n is eventually negative.

2.1 Examples

Example 2.1.1

Consider the first order neutral delay difference equation

$$
\Delta (nx_n - x_{n-1}) + (2n+3)x_{n-2}^3 = 0, n > 0
$$

Here

$$
a_n = n, k = 1, l = 2, p_n = -1, q_n = (2n+3)
$$

All the conditions of the theorem 1.2.2 are satisfied. Hence all its solutions are oscillatory. One such solution is $(-1)^n$.

Example 2.1.2

Consider the first order neutral delay difference equation

$$
\Delta \left(\frac{1}{n-1} x_{n-1} \right) + \frac{2n+3}{(n-2)^3} x_{n-2}^3 = 0, n > 2
$$

Here

$$
a_n = 1, k = 1, l = 2, p_n = -\frac{1}{n-1}, q_n = \frac{2n+3}{(n-2)^3}
$$

Hence all the conditions of the theorem 1.2.2 are satisfied. Hence all its solutions are oscillatory. One such solution is $n(-1)^n$.

References

