Mitigating Techniques to Reduce Subthreshold Currents in Submicron MOSFET’s

Akhil Ulhas Masurkar

Abstract—Scaling Transistors into the nano-meter regime has resulted in a dramatic increase in the MOS leakage currents. Threshold voltages have been scaled down to maintain the performance at reduced power supply voltages. Increased transistor leakages not only impact the overall power consumed by a CMOS system, but also reduce the margins available for design due to the strong relationship between process variation and leakage power. Therefore it is essential for circuit designers to understand the components of leakage, sensitivity of leakage to different parameters, and leakage mitigating techniques in the nanometer technologies by designing accurate models of short channel devices and simulating the same using the available standard CAD tools. This paper provides an overview of the mitigating techniques used during the fabrication of the MOSFET’s using SILVACO.

Index Terms—Scaling, Nanometer, Leakage, sensitivity, mitigating, simulating, fabrication, SILVACO

1 INTRODUCTION

Historically, VLSI designers have used circuit speed as the "performance" metric. Large gains, in terms of performance and silicon area, have been made for digital processors, microprocessors, DSPs (Digital Signal Processors), ASIC’s (Application Specific IC’s), etc. In general, "small area" and "high performance" are two conflicting constraints. The IC designer’s activities have been involved in trading off these constraints. Power dissipation issue was not a design criterion but an afterthought [1][2]. In fact, power considerations have been the ultimate design criteria in special portable applications such as wristwatches and pacemakers for a long time. The objective in these applications was minimum power for maximum battery life time. Recently power dissipation is becoming an important constraint in a design. Several reasons underlie the emerging of this issue.

Battery-powered systems such as laptop, notebook computers, electronic organizers, etc need an extended battery life. Many portable electronics use the rechargeable Nickel Cadmium (NiCd) batteries. Although the battery industry has been making efforts to develop batteries with higher energy capacity than that of NiCd, a strident increase does not seem imminent. The expected improvement of the energy density was 40% by the turn of the century [3][5]. With recent NiCd batteries, the energy density is around 20 Watt-hour / pound and the voltage is around 1.2 V. This means, for a notebook consuming a typical power of 10 Watts and using 1.5 pound of batteries, the time of operation between recharges is 3 hours. Even with the advanced battery technologies such as Nickel-Metal Hydride (Ni-MH) which provide large energy density characteristics (30 Watt-hour/pound), the life time of the battery is still low[4][6]. Since battery technology has offered a limited improvement, Low-power design techniques are essential for portable devices.

The key challenge in reducing the leakage power is the Sub-threshold current. This can be reduced by proper choice of the substrate, appropriately doping the P or the N Substrate depending on PMOS or the NMOS being used, size of the channel implants and doping concentration of the channel implants. Optimizing these parameters will lead to reduction a reduction in the sub-threshold leakage for a given transistor technology.

2 EQUIVALENT MOSFET MODEL

The equivalent circuit structure of the NMOS LEVEL 3 model, which is the default MOSFET model in SPICE, is shown in Fig 1.[7][8][9]. The same model has been used as a baseline while reducing the sub-threshold currents.

![Equivalent MOS Model](image)

Note that the voltage-controlled current source I_D determines the steady-state current-voltage behaviour of the device, while the voltage controlled (nonlinear) capacitors connected between the terminals represent the parasitic oxide-related and junction capacitances. The source-substrate and the drain-substrate junctions, which are reverse-biased under normal operating conditions, are represented by ideal diodes in this equivalent circuit. Finally, the parasitic source and drain resistances are represented by the resistors R_D and R_S, respectively.
ly, connected between the drain current source and the respective terminals.

The basic geometry of an MOS transistor can be described by specifying the nominal channel (gate) length L and the channel width W both of which are indicated on the element description line. The channel width W is, by definition, the width of the area covered by the thin gate oxide. Note that the effective channel length L_{eff} is defined as the distance on the surface between the two (source and drain) diffusion regions. Thus, in order to find the effective channel length, the gate-source overlap distance and the gate-drain overlap distance must be subtracted from the nominal (mask) gate length specified on the device description line. The amount of gate overlap over the source and the drain can be specified by using the lateral diffusion coefficient L_D.

For modelling p-channel MOS transistors, the direction of the dependent current source, the polarities of the terminal voltages, and the directions of the two diodes representing the source-substrate and the drain-substrate junctions must be reversed. Otherwise, the equations to be presented in the following sections apply to p-channel MOSFETs as well.

The basic model implemented in SPICE calculates the drift current in the channel when the surface potential is equal to or larger than $2\Phi_S$ that is in strong surface inversion. In reality, a significant concentration of electrons exists near the surface for $V_{GS} < V_T$, therefore, there is a channel current even when the surface is not in strong inversion. This is known as the sub-threshold current and is mainly due to diffusion between the source and the channel.

3 SUB-THRESHOLD CONDUCTION

A closer inspection of the I_D-V_{GS} curves of Fig (2) reveals that the current does not drop abruptly to 0 at $V_{GS} = V_T$. It becomes apparent that the MOS transistor is already partially conducting for voltages below the threshold voltage. This effect is called sub-threshold or weak-inversion conduction [15][16][17]. The onset of strong inversion means that ample carriers are available for conduction, but by no means implies that no current at all can flow for gate-source voltages below V_T, although the current levels are small under those conditions.

![Graph](image)

Figure 2. NMOS transistor I_D-V_{GS} characteristic for long and short-channel devices (0.25µm CMOS technology). $W/L = 1.5$ for both transistors and $V_{DS} = 2.5$ V.

The current in this region can be approximated by the expression where I_S and n are empirical parameters, with $n \geq 1$ and typically ranging around 1.5.

\[
I_D = I_S e^{V_{GS}/n (1 - e^{-V_{DS}/n q/k T})}
\]

In most digital applications, the presence of sub-threshold current is undesirable as it detracts from the ideal switch-like behavior that we like to assume for the MOS transistor.
We would rather have the current drop as fast as possible once the gate-source voltage falls below V_T. The (inverse) rate of decline of the current with respect to V_{GS} below V_T hence is a quality measure of a device. It is often quantified by the slope factor S, which measures by how much V_{GS} has to be reduced for the drain current to drop by a factor of 10. From (1) we find

$$S = n \frac{(kT)}{q} \ln(10)$$ \hspace{1cm} (2)

Where,

$$n = 1 + \frac{\gamma}{2 \sqrt{(V_p + 2\Phi_f)}}$$ \hspace{1cm} (3)

Where ‘S’ is expressed in mV/decade. V_p is the pinch off voltage. For an ideal transistor with the sharpest possible roll-off, $n=1$ and $(kT/q)\ln(10)$ evaluates to 60 mV/decade at room temperature, which means that the sub-threshold current drops by a factor of 10 for a reduction in V_{GS} of 60 mV.

Unfortunately, n is larger than 1 for actual devices and the current falls at a reduced rate (90 mV/decade for $n = 1.5$). The current roll-off is further affected in a negative sense by an increase in the operating temperature (most integrated circuits operate at temperatures considerably beyond room temperature). The value of n is determined by the intrinsic device topology and structure [10][13]. Reducing its value hence requires a different process technology, such as silicon-on-insulator [6].

Sub-threshold current has some important repercussions. In general, we want the current through the transistor to be as close as possible to zero at $V_{GS} = 0$. This is especially important in the so-called dynamic circuits, which rely on the storage of charge on a capacitor and whose operation can be severely degraded by sub-threshold leakage. Achieving this in the presence of sub-threshold current requires a firm lower bound on the value of the threshold voltage of the device. For the example of Fig 3, a slope of 89.5 mV/decade is observed (between 0.2 and 0.4 V). This is equivalent to an n-factor of 1.49.

4 Proposed Mitigating Techniques

Recent studies in the VLSI design area have proposed that the sub-threshold current can be reduced by

a. Changing the size of the drain and source regions.

b. Changing the doping concentrations of the source and drain implants depending on whether the MOS under fabrication is a PMOS or an NMOS.

c. Changing the doping concentrations of the Substrate used for fabrication.

d. Varying the Channel Length.

The following observations were made for a change in drain current in the sub-threshold region with variation in the doping concentrations of the P-substrate (Considering NMOS using SILVACO).

Figure 4. Variation in Sub-threshold current with change in the P-Substrate Doping concentrations
5 Fabrication Steps

1. Initial orientation of the crystal is kept as [100]
2. P-well formation including masking off of the N-well is carried out at temp 1000 degree Celsius, diffusion time=30 minutes, dryo2 press=1.00. HCl=3
3. P-well Implant is carried out using boron dose=8e12 energy=100 pearsons, diffusion temp=950 time=100 wet O2 HCl=3
4. N-well implant is carried out using the following processes
 a. diffusion time=50 temp=1000 t.rate=4.000 dry O2 press=0.10 HCl=3
 b. diffusion time=220 temp=1200 nitro press=1
 c. diffusion time=90 temp=1200 t.rate=4.444 nitro press=1
5. Etching of oxide is done using sacrificially cleaning the oxide with diffusion time=20 temp=1000 dry O2 press=1 HCl=3
6. Gate oxide is then grown with diffusion time=11 temp=925 dry O2 press=1.00 hcl=3
7. V_T (Threshold Voltage) adjust implant is carried out using boron dose=9.5e11 with energy=10 pearson.
8. This then by a poly-silicon deposit to form the gate.
9. Excess poly-silicon is then removed using the method of Fermi compress with diffusion time=3minutes, temp=900 wet O2 press=1.0
10. Implant phosphor dose=3.0e12 energy=20 pearson
11. Deposit oxide thick
12. Implant arsenic dose=5.0e15 energy=50 pearson
13. Deposit aluminium thick=0.03
14. Etch aluminium

6 Results

From the above results in Fig 5 it can be noted that, when the doping concentration was set to a value of 8 \times 10^{15}/cm^3 at Vgs=0V, the off state current was equal to 1 \times 10^{-15} A. But the roll off slope is about 60mV/decade. This directly affects the threshold voltage and the threshold voltage increases to 1V. To mitigate this effect the P-substrate doping concentration was controlled to 8 \times 10^{12}/cm^3 and the n+ implant doping concentration was controlled to 3 \times 10^{12}/cm^3. It was observed that the drain current at Vgs=0 increased to 1 \times 10^{-12} A, but the slope of the roll off increased to 125 mV/decade. The reduction in the threshold voltage was observed from 1V to 0.68V.
7 CONCLUSIONS

Since the majority of the transistors in a digital circuit are designed at the minimum channel length, the variation of the threshold voltage as a function of the length is almost uniform over the complete design, and is therefore not much of an issue except for the increased sub-threshold leakage currents. More troublesome is the DIBL, as this effect varies with the operating voltage. This is, for instance, a problem in dynamic memories, where the leakage current of a cell (being the sub-threshold current of the access transistor) becomes a function of the voltage on the data-line, which depends upon the applied data patterns.

From the above results it can be observed that sub-threshold currents can be reduced to a minimum by keeping the P-substrate to N+ implants doping ratio to (8:3). By maintaining this doping ratio the threshold voltage can be controlled within the prescribed limits while still achieving low sub-threshold leakage currents and sharp roll off in the drain current below the value of the threshold voltage. Since the gate overlap capacitances are very low, the parasitic capacitances reduce greatly and hence the transistor fabricated with the above doping ratio has reduced delays and can be used in high speed applications.

8 ACKNOWLEDGMENT

I wish to acknowledge with deep gratitude the valuable guidance received from Prof. Swapnali Mahadik who encouraged me throughout this venture suggesting the necessary modifications which has greatly improved the quality of the text. I am also thankful to Prof. Deepak V. Bhoir, Head of Electronics Engineering Department who gave necessary help from time to time as required.

9 REFERENCES

10 BIO-DATA OF AUTHOR

Akhil U Masurkar received his B.E degree in Electronics Engineering from Vidyalankar Institute of Technology, Mumbai - 37 affiliated to the University of Mumbai, Maharashtra, India. He is currently pursuing his M.E. degree in Electronics Engineering from Fr. Conceicao Rodrigues College of Engineering, Mumbai – 50, affiliated to the University of Mumbai, Maharashtra, India. He is working as a lecturer in Department of Computer Engineering at Vidyalankar Institute of Technology, Mumbai-37, Maharashtra, India. He has 3 years of teaching experience at college level and his area of interest includes Microelectronics, VLSI and Digital System Design. He is a life member of ISTE and also a member of the IEEE.