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Abstract— We have studied the single-particle properties and the equation of state (EOS) of symmetric nuclear and neutron 
matter within the framework of the Brueckner-Hartree-Fock (BHF) approach extended by including a phenomenological 
three-body force (3BF). Adding the 3BF to the initial two-body force (2BF) and applying a partial-wave expansion, G-matrix 
calculations are performed in pure neutron matter as well as in symmetric nuclear matter. The 3BF is shown to affect signifi-
cantly the nuclear matter EOS at high densities above the normal nuclear matter density and it is necessary for reproducing 
the empirical saturation property of symmetric nuclear matter in a non-relativistic microscopic framework.  The calculations 
have been done using the charge-dependent chiral nucleon-nucleon interaction at order four N3LO potential and compared 
with both the CD-Bonn and Argonne V18 potentials plus the three-nucleon Urbana interaction. It is found that the calculations 
with the N3LO potential alone for symmetric nuclear matter at high density is strongly over bound in the BHF approximation. 

 

Index Terms—Chiral Force, Equation of State, Partial Waves, Pure Nuclear Matter, Symmetric Nuclear Matter, 
Three-Body Force. 

   

——————————      —————————— 

1 INTRODUCTION                                                                     
The study of microscopic and bulk properties of infinite nu-
clear matter starting from realistic models of two-body forces 
(2BF) is still one of the challenging open problems in nuclear 
physics. In fact, the presence of strong short-range and tensor 
components in the realistic 2BF, which are required to fit the 
deuteron properties and nucleon-nucleon (NN) scattering da-
ta, are the origin of the corresponding correlations in the nu-
clear wave function. The study of these correlations and their 
influence on different observables has made important pro-
gress not only from the theoretical side but also from the ex-
perimental point of view [1]. The short-range correlations and 
the nucleon momentum distribution in nuclear matter have 
been examined by using different approaches, such as the 
Brueckner-Hartree-Fock (BHF) [2], variational [3, 4], Monte 
Carlo technique [5, 6], self-consistent Green’s function method 
[7, 8], etc. The only input required in these calculations is the 
realistic NN interaction.  
 
Actually all the results for the nuclear equation of state (EOS) 
using various microscopic calculations with only realistic 2BF 
fail to reproduce the exact saturation point extracted from the 
phenomenological data on a wide set of nuclei. Different two-
body interactions give in general different saturation points, 
all outside the phenomenological constraints. In particular 
within the Brueckner theory, with the standard choice of the 
single particle potential, the theoretical saturation points ap-
pear to lie along the celebrated “Coester band” [9]. If the so-
called “continuous choice” is adopted, the Coester band seems 
to coalesce within in a more limited region of the energy-
density plane, but still the phenomenological region is missed 

[10]. There are various attempts have been made to include 
other methods to improve the description of the saturation 
properties. One way is, three-body forces (3BF) have been 
widely used to implement the nuclear Hamiltonian and to 
shift the saturation point towards the phenomenological one 
[11]. There is another method such as relativistic effects and 
3BF contributions in the nuclear medium. It was demonstrated 
that relativistic Brueckner-Hartree-Fock calculations [12] can 
provide a satisfactory saturation curve. However, because 
contributions from higher-order correlations and three-
nucleon forces have not been fully estimated in the relativistic 
treatment, the problem seems not to be settled yet. 
 
In the present work, three different 2BFs are chosen, with very 
different short-range and tensor components, to explore the 
widest possible range. The alteration of the results with the 
underlying 2BF provides an indication of the validity of the 
physical effects at play.  The first of them is the Idaho next-to-
next-to-next-to-leading-order (N3LO) chiral-perturbation-
theory potential of Ref. [13]. Its low-energy constants are fitted 
to reproduce the two-body scattering data with a large accura-
cy in a χ2 procedure [14]. Owing to its very nature, as an effec-
tive-field-theory potential, the interaction requires a momen-
tum cutoff, which is chosen at 500MeV. In general, this 2BF 
induces relatively few high-momentum components in the 
many-body wave function. This is particularly true beyond 
the cutoff momentum, where the potential is not expected to 
apply. The second one is the charge-dependent Bonn (CD-
Bonn) interaction is based on a meson-exchange picture and 
provides a very accurate fit to the two-body scattering data 
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[15]. Its short-range core is soft, which yields less high-
momentum components. Also, we use the Argonne (V18) con-
tains a π-exchange plus parameterizations in real space, in-
cluding 18 spin-isospin operators [16]. It is local and a typical 
example of a particularly strong, but finite, short-range core. 
All these 2BFs are phase-shift equivalent.  
 
Kohno [17] has calculated EOS of symmetric nuclear matter 
and pure neutron matter, using the N3LO interaction and 
NNLO 3BF of the Jülich group [18]. In the chiral effective field 
theory, the 3BF is introduced in a systematic way along with 
the NN potential. Three of the five coupling constants in the 
NNLO 3BF are fixed in a NN sector. The remaining two pa-
rameters are under control in the literature in terms of repro-
ducing the properties of few-nucleon systems. The 3BF is 
treated by reducing it to density-dependent NN interactions 
by folding single-nucleon degrees of freedom in infinite mat-
ter.  His calculated results show that the empirical saturation 
property is well reproduced in nuclear matter. In the present 
work, the N3LO NN potentials complemented by phenomeno-
logical Urbana 3BFs [19], instead of chiral three-nucleon forc-
es, have been applied in calculations to nuclear and neutron 
matter. 
 
We will calculate the ground-state properties of infinite sym-
metric nuclear matter within the framework of Brueckner-
Hartree-Fock theory using three different 2BFs. The effects of 
the 3BF are taken into account via a density-dependent two-
body potential, phenomenological Urbana type that is added 
to the chiral N3LO potential 2BF.  

2  FORMALISM 
 
The basic ingredient in BHF approach is the reaction matrix G, 
which satisfies the following Bethe-Goldstone equation: 

 

,   (1)                                 

 
Where V is the bare realistic 2N  interaction, ρ is the nuclear 
matter density, ω is the starting  energy, and Q is Pauli opera-
tor  which restricts the intermediate states to particle states 
with momenta ka, kb, which are above the corresponding 
Fermi momentum. The single-particle energy e(k)  which is 
used in equation (1) can be interpreted as the physical energy 
of a particle (hole) at momentum k inside nuclear matter, i.e. 
the quasi-particle energy in the language of the many-body 
theory. e (k) is a simple sum of kinetic and potential energies 
U(k) and has the form: 

                           (2) 

Then U(k) can be interpreted as the single-particle optical po-
tential in nuclear matter. This interpretation requires that U(k) 
is continuous at k=kF. This choice of the auxiliary potential has 
been advocated by Mahaux and his group [20]. In general, 
U(k) can be adopted to be the self energy Σ(k, e(k)) of the nu-

cleon with momentum k. Therefore, if one adopts the continu-
ous choice for the auxiliary potential, then U(k) can be written 
as, 
 

  (3) 
 
for all values of |k|. Once the single-particle potential is cal-
culated, one can easily calculate the binding energy per nucle-
on for symmetric nuclear matter of density ρ=2(kF)3/(3π2): kF 
is the Fermi momentum of SNM, 

 
                                      

 
                                                                                         (4) 

 
where the suffix a denotes antisummarization. The matrix el-
ements of G can be used to evaluate the partial waves contri-
butions to the total energy per nucleon. In the case of the exact 
Pauli operator this energy is given as [21] 

 

 

 

 

 

                                                                                                   (5) 
with Ω being the angle between the direction of the relative 
momentum k and the center-of-mass momentum  K. In the 
calculations discussed below we consider the coupling of par-
tial waves up to Jmax, Jmax ≤ 9. 
 In the present work, the phenomenological Urbana interac-
tion [19] has been adopted to study the effect of 3BFs on the 
EOS. It consists of an attractive term due to two-pion exchange 
with excitation of an intermediate Δ resonance, and a repul-
sive phenomenological central term. The suggested 3BF is re-
duced to a density dependent two-body force by averaging on 
the position of the third particle, assuming that the probability 
of having two particles at a given distance is reduced accord-
ing to the two-body correlation function. Explicitly, the 3BF is 
written as [22] 
 

                                                              (6) 
 

The first one is the so-called Fujita-Miyazawa two-pion ex-
change contribution. It is a cyclic sum over the nucleon indices 
i, j, k of products of anticommutator {,} and commutator [,] 
terms  
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                                                                                                         (7) 
Where 
 

                                              (8) 
 
is the one-pion exchange operator, σ and τ are known as the 
Pauli spin and isospin operators, and  

 
is called the tensor operator. Both Y(r) and T(r) are the Yuka-
wa and tensor functions associated to the one-pion exchange 
as in the 2B potential. The repulsive term is written as  

 
 

                                      (9) 
 
 
The strengths A and U are parameters that in the present work 
are adjusted to reproduce the exact saturation point of sym-
metric nuclear matter. 

 
 

3 Results and Discussion 
 

3.1 The single-particle potential 
In Fig. 1 the results for nuclear and neutron matter obtained in 
microscopic many-body calculations – BHF without three-
body forces using three-different 2BFs are shown together 
with three-body forces.  The single-particle potential as func-
tion of momentum is illustrated at the empirical value of satu-
ration density ρ0 = 0.16 fm-3 various models for the NN inter-
actions.  These models are, with high accuracy fits to the NN 
scattering data, N3LO potential [13]  which is based on chiral 
perturbation theory, CD-Bonn  [15] and Argonne V18 [16] po-
tentials.  In the case of symmetric nuclear matter and without 
3BF contributions, the single-particle potential is more attrac-
tive using N3LO potential displayed with solid line than CD-
Bonn with dash line and Argonne V18 with dash-double dot-
ted curve interactions.  Also, the single particle potentials are 
equal to -93.9, -91.9 and -87.7 MeV at k = 0 for the N3LO, CD-
Bonn and Argonne V18 interactions, respectively, in the case 
of BHF approximation only. This means that the effective in-
teraction is more attractive between nucleons in the case of 
N3LO potential. There is another indication for the differences 
between the interactions considered: the Argonne V18 is local 
and is stiffer than the N3LO and CD-Bonn that are nonlocal 
interaction.  Therefore a larger part of the attraction in the ef-
fective interaction originates from the particle-particle ladder 
contributions to the G-matrix. This is true in particular for the 
proton-neutron interaction, which can be traced back to the 
correlations in the 3S1-3D1 channel of the interacting nucleons 
with total iso-spin T = 0 [1].  
When 3BF is complemented to the effective two-body force, 
the situation is different, especially for the N3LO displayed by 
dotted curve and CD-Bonn with dash-dotted line potentials. 
One observes that the single-particle potential becomes less 
attractive than introduced by BHF approach. Also the depth of 

it has the values -90.01 and -86.77 MeV for N3LO and CD-Bonn 
potentials, respectively. On the contrary, with the Argonne V18 
with 3BF, one observes only very slight quantitative changes 
and the corresponding plots are not shown. This may be be-
cause of its strongly repulsive core.  There is another behavior 
of single-particle potentials which show a significant deviation 
from a parabolic shape in particular at momentum slightly 
above the Fermi momentum kF [10, 23]. It is obvious that such 
a deviation tends to provide more attractive matrix elements 
of G-matrix in evaluating the self-energy for hole states ac-
cording to equation 3, which leads to more binding energy. 

 
 

Fig. 1.  The single-particle potential as a function of 
momentum. The calculations are done for symmetric 
nuclear matter with a Fermi momentum 𝑘𝐹 = 1.35 fm−1 
using chiral N3LO, CD-Bonn and Argonne V18 poten-
tials with and without 3BF in the frame of the BHF ap-
proach. 

 
3.2 EOS of symmetric nuclear and pure neu-

tron matter 
 

In Fig. 2, we display our BHF results with and without 3BF of 
the EOS for SNM.  In the case of BHF only, the solid line de-
notes the results from the only two-body chiral potential 
N3LO, which compared with both dashed line by CD-Bonn 
and dash-double dotted line with Argonne V18 potentials. The 
empirical estimates of the binding energy are shown as the 
rectangular box in Fig. 2, whereas the solid points indicate the 
saturation points of each interaction. These three forces give 
EOS which differs substantially between each other.  In par-
ticular, for N3LO potential the saturation point falls at the 
Fermi momentum kF ≈ 1.90 fm-1 with an energy per particle 
E/A ≈ -26.22 MeV, this extremely high saturation density is 
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remedied by the 2NF in the BHF approach. For the CD Bonn 
the saturation point lies at the Fermi momentum kF ≈ 1.7 fm-1 

with an energy per particle E/A ≈ -22.51 MeV, while for V18 the 
saturation point is kF ≈ 1.50 fm-1, E/A ≈ -16.72 MeV.  As to be 
expected, BHF calculation using only the two-body, especially 
using chiral N3LO potential displays excessive attraction and 
is unable to produce saturation up to very high density. Thus, 
with only 2BF, the nonrelativistic BHF fails to obtain either the 
magnitude or the density near the empirical estimates (shown 
as rectangles) of the saturation property, thus, our results re-
confirm the Coester et al. band [24]. The numerical values of 
saturation density ρ, binding energies per nucleon (−E/A), and 
other properties obtained in the present work, are given in 
Table 1.  
 

 
Fig. 2. 𝐸/𝐴 in MeV for symmetric nuclear matter as a 
function of density using chiral N3LO, CD-Bonn and 
Argonne V18 potentials. The results are obtained using 
BHF approach with and without three-body force. For 
more details see the text. 
 
As one expects, the qualitative features are confirmed 
in the subsequent implementation of the 3BF in BHF 
calculations of symmetric nuclear matter.  The result-
ing EOS with 3BFs are shown in Fig. 2 and displayed 
by dotted line for chiral N3LO+3BF, with dash-dotted 
line for CD-Bonn+3BF, and with dot-double dashed 
curve for V18 + 3BF interactions. We note that the in-
clusion of 3BFs yields nuclear saturation very close to 
the empirical estimates (see also Table 1). More pre-
cisely, the saturation point for chiral N3LO+3BF is kF ≈ 
1.4 fm-1, E/A ≈ -16.8 MeV, for the CD Bonn + 3BF is kF 
≈ 1.39 fm-1, E/A ≈ -15.5 MeV, while for the V18 + 3BF 
interaction is kF ≈ 1.36 fm-1, E/A ≈ -15.32 MeV. One can 
see also, the main message coming from the compari-

sons explained in Fig. 2 is that the differences be-
tween the two EOS, which are apparent in the case 
without 3BF, are strongly reduced when 3BF are in-
troduced. In the case of CD-Bonn+3BF and V18 + 3BF 
interactions, their high density behavior is also simi-
lar, up to few times the saturation density.  On the 
contrary, with the chiral N3LO+3BF, one observes a 
quite different behavior than CD-Bonn+3BF and V18 + 
3BF interactions. 
 

Table 1: The saturation points as a function of density, the incom-
pressibility K and the symmetry energy at the saturation points 
for various potentials. 

 
The resulting equation of state pure neutron matter, which is 
more appropriate for neutron star studies, is displayed in Fig. 
3 with and without including 3BF. The solid and dotted lines 
represent the EOS for N3LO, whereas the dash-dotted and 
dashed curves are for CD-Bonn. Finally, the dash-double dot-
ted and dot-double dashed lines for V18 potential.  

 

 
 

Fig. 3. 𝐸/𝐴 in MeV for pure neutron matter as a function 
of density using chiral N3LO, CD-Bonn and Argonne 
V18 potentials. The results are obtained using BHF ap-
proach with and without three-body force. For more de-
tails see the text. 

Model ρ 
(fm-3) 

kF 
(fm-1) 

-E/A 
(MeV) 

K 
(MeV) 

E sym 
(MeV) 

CD-Bonn +3BF 0.180 1.386 15.497 179.26 26.033 
CD-Bonn 0.331 1.698 22.505 265.88 35.363 
N3LO + 3BF 0.185 1.399 16.805 244.30 26.984 
N3LO  0.464 1.901 26.221 220.76 42.215 
Arg. V18 +3BF 0.169 1.358 15.319 482.48 24.814 
Arg. V18  0.229 1.502 16.718 250.65 27.034 
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Moreover, the calculations are extended at densities up to 
about five times the saturation one.  It appears from Fig. 3, the 
EOS of pure neutron matter given by V18 potential is more 
repulsive, when phenomenological 3BF is included. Further-
more, the trend for the CD-Bonn potential is similar, especially 
at high densities. Whereas, the EOS, that is given by N3LO 
interaction, is less repulsive than the other interactions.  

 
3.3 Partial waves contribution to EOS 

 
To see the effect and contributions of the 3BF in more details, 
we show, in figures 4 & 5, main partial wave decomposition of 
the calculated potential energy according to Eq. 5. If we look at 
partial waves depicted in Fig. 4, we see the attractive contribu-
tion in the 3S1-3D1 channel, in the case of symmetric nuclear 
matter, is seen to increase by including the 2NF only, especial-
ly for chiral N3LO and CD-Bonn, respectively. 

 
Fig. 4. The contribution from the 3S1-3D1 partial wave in the con-
tribution to the binding energy per nucleon of symmetric nuclear 
matter as a function of density ρ in fm-3. 
 
 This means that the potential energy in the 3S1-3D1   state 
turns out to be more attractive due to the enhancement of the 
tensor component. While in the case of Argonne V18 potential, 
the resulting contribution represented by double dash-dotted 
line decreases as density increases. This behavior shifts the 
minimum of the energy to value close to the empirical one. 
This is due to the enhancement of the tensor correlation by the 
supplemented tensor force. In contrast, when the 3NF is in-
cluded, there is significant change happen, especially for Ar-
gonne V18 interaction, the 3BF induces a substantial repulsion 
as the density increases and there is a big difference observed 

between two cases. This means that the EOS becomes more 
repulsive as observed in Fig. 2. There is another contribution 
to EOS comes from 1S0 channel, represented by left panel of 
Fig. 5. The same behavior is observed when the 3BF is includ-
ed. Tables 2 & 3 shows the contribution of the most calculated 
partial waves to EOS of nuclear matter at kF = 1.35 fm-1 with 
and without 3BF.  
 

 
Fig. 5: The contribution from the 1S0 partial wave in the 
contribution to the binding energy per nucleon is as a 
function of density ρ in fm-3. Left panel is for symmetric 
nuclear matter, right panel is for pure neutron matter. 
 

In the case of pure neutron matter, some partial waves are 
blocked in the antisymmetrization procedure of the two-
neutron wave function, i.e. they can only be in total T = 1 iso-
spin state. As expected from table III, the major change is ob-
served in the 1S0 partial wave, represented by right panel of 
Fig. 5. On the other hand, the 1S0 contribution becomes less 
attractive as density increase. This makes EOS of pure nuclear 
matter more replies at high density. The other visible effect is 
in 3P2 - 3F2 mixing waves with negative values and the 3P1  
wave with positive values. 
 
 
 
 
 
 
 
 
Table 2. Partial waves for symmetric nuclear matter for different 
potentials at kF = 1.35 fm-1. 
 
 ArgonneV R18 CD-Bonn N P

3
PLO 

 BH+3BF BHF BHF+3BF BHF BHF+3BF BHF 
P

1
PSR0 -14.0591 -16.396 -13.9200 -16.877 -14.6086 -17.073 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015                                                                                                   387 
ISSN 2229-5518 

IJSER © 2015 
http://www.ijser.org  

3S 1 –3D1 -22.3229 -19.230 -22.4899 -20.931 -22.8389 -21.793 
3P0 -3.1609 -3.1727 -3.2391 -3.2556 -3.2876 -3.2920 
3P1 9.7969 9.3345 10.0816 9.6234 10.0289 9.5342 
1P1 4.4388 3.7671 4.4509 3.7782 4.4110 3.7903 
1D2 -2.5796 -2.5373 -2.6363 -2.6034 -2.6131 -2.5709 
3D2 -3.3103 -3.8561 -3.3219 -3.8595 -3.3254 -3.8849 
3P2-
3F2 

-7.1974 -7.7395 -7.3331 -7.9446 -7.4039 -8.1595 

1F3 .5828 .7721 .5685 .7578 .6131 .8021 
3F3 .6101 1.2703 .7355 1.3949 .7158 1.3744 
1G4 -.1694 -.3812 -.1917 -.4037 -.1924 -.4044 
3G4 -.1969 -.6817 -.1907 -.6752 -.1872 -.6721 
3D3 -
3G3 

-.3982 .1035 -.3604 .1317 -.1375 .3048 
3F 4 -3H4 -.0991 -.3821 -.1619 -.4461 -.1017 -.3872 
3G5-
3I5 

-.0504 .0954 -.0527 .0933 -.0343 .1114 

1H5 .0322 .1928 .0325 .1931 .03534 .1959 
3H5 -.0414 .2673 -.0141 .2946 -.0103 .2984 
1I6 .0213 -.0849 .0107 -.0956 .0094 -.0969 
3I6 .0371 -.1483 .0369 -.1484 .0361 -.1493 
3H6 -3L6 .0437 -.0361 .0297 -.0502 .0292 -.0506 
1J7 -.0161 .0489 -.0144 .0507 -.0140 .0511 
3J7 -.0479 .0587 -.0371 .0695 -.0365 .0701 
3J7-
3K7 

-.0205 .0212 -.0199 .0218 -.0195 .0222 

1K8 .0176 -.0201 .0126 -.0250 .0123 -.0253 
3J8-
3L8 

.0152 -.0067 .0122 -.0097 .0121 -.0099 

3K8 .0247 -.0345 .0227 -.0366 .0224 -.0368 
1L9 -.0086 .0120 -.0068 .0138 -.0067 .0139 
3K 9 -
3M9 

-.0068 .0045 -.0065 .0048 -.0064 .0049 
3L9 -.0186 .0129 -.0141 .0175 -.0139 .0177 

 
Table 3. Partial waves for pure neutron matter for different poten-
tials at kF  = 1.35 fm−1. 

 
  
 

3.4 Incompressibility K and Symmetry energy 
as 

There is another important characteristic of the EOS and it 
enters in the discussion of a variety of phenomena such as 
supernovae explosions or heavy ion collisions, that it is the 
incompressibility K. It measures the stiffness of the EOS, usu-

ally calculated at saturation point: 

                  (10) 
The experimental value of the incompressibility of symmetric 
nuclear matter at its saturation density ρ0 has been determined 
to be 230 ± 40 MeV [25]. At the saturation density, the values 
of the incompressibility obtained for symmetric nuclear matter 
are summarized in table 1. As one sees, the values of incom-
pressibility K are compatible with the experimental value.  

 

Fig. 6: The symmetry energy obtained from Eq. 
(12) as a function of the density ρ in fm-3. 

The EOS of PNM combined with that of SNM provides 
us with information on the iso-spin 
effects [26], in particular on the symmetry energy as. 
The symmetry energy of nuclear matter 
is defined as a second derivative of energy per nucleon 
E/A with respect to the asymmetry 
parameter α as follows 

 
 

                            (11) 
 

where we introduce the asymmetry parameter α = ( ρn - 
ρp)/ ρ. Both ρn and ρp are the neutron and proton densi-

ties in asymmetric nuclear matter and ρn + ρp = ρ is the total 
density of asymmetric nuclear matter. It is well established 
[27, 28] that the binding energy per nucleon E/A fulfills the 
simple α2-law, as. α2 = E/A (ρ,α =1) - E/A(ρ,α = 0),   not only for α 
≤ 1, as assumed in the empirical nuclear mass formula [29], 
but also in the whole asymmetry range and the behavior is 
linear. This enables us to calculate the symmetry energy as in 
terms of the difference between the binding energy of pure 
neutron matter E/A (ρ,α =1)  and that of symmetric nuclear 

 Argonne  VR18 CD-Bonn N P

3
PLO 

 BHF+3BF BHF BHF+3BF BHF+3BF BHF BHF+3BF 
P

1
PSR0 -10.531 -11.286 -10.40 -11.39 -10.79 -11.56 

P

3
PPR0 -2.3446 -2.3488 -2.309 -2.316 -2.302 -2.305 

P

3
PPR1 6.4506 6.3114 6.5221 6.3771 6.5112 6.3644 

P

1
PDR2 -1.8000 -1.7852 -1.784 -1.773 -1.762 -1.747 

P

3
PPR2R-P

3
PFR2 -5.3761 -5.5267 -5.402 -5.580 -5.409 -5.638 

P

3
PFR3 .7449 .9651 .7685 .9884 .7513 .9709 

P

1
PGR4 -.2194 -.2899 -.2161 -.2867 -.2153 -.2859 

P

3
PFR4R-

P

3
PHR4 

-.1994 -.2939 -.2227 -.3177 -.1811 -.2765 

P

3
PHR5 .1153 .2182 .1137 .2166 .1151 .2180 

P

1
PIR6 -.0349 -.0703 -.0354 -.0708 -.0359 -.0713 

P

3
PHR6R-

P

3
PLR6 

-.0065 -.0332 -.0114 -.0380 -.0114 -.0381 

P

3
PJR7 .0160 .0516 .0174 .0529 .0175 .0530 

P

1
PKR8 -.0053 -.0179 -.0067 -.0193 -.0068 -.0193 

P

3
PJR8R-P

3
PLR8 .0006 -.0067 -.0004 -.0077 -.0004 -.0077 

P

3
PLR9 .0016 .0122 .0033 .0139 .0033 .0139 
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matter E/A (ρ,α =0), i.e.  
 

as
 = E/A (ρ,α =1) - E/A(ρ,α = 0),                    (12) 

but one would refrain from applying it at very high density. 
Fig. 6 shows the values of the s ymmetry energy for the differ-
ent EOSs that we consider, namely, the nonrelativistic BHF 
calculations with the chiral N3LO, CD-Bonn and the Argonne 
V18 potentials with and without three-body forces. The values 
of symmetry energy according to Eq. 12 at saturation points 
are found to be 26.98, 26.03 and 24.5 MeV for N3LO+3BF, CD-
Bonn+3BF and V18 +3BF potentials as they be tabulated in ta-
ble I, respectively. These values close to the empirical value, as 
= 30 ± 2 MeV. 

 

4 CONCLUSION 
We have presented results for both microscopic and macro-
scopic properties of infinite nuclear matter in the frame of BHF 
theory. The calculations have performed with a variety of in-
teractions. These include phase-shift equivalent forces with 
strong and soft short-range cores.  These interactions are chiral 
N3LO, CD-Bonn and Argonne V18 potentials.  The single-
particle potential is analyzed at saturation density using   dif-
ferent potentials with and without three-body force. Main dif-
ferences were noticed at zero momentum, i.e. depth of the 
single-particle potential. Also, we observed a visible repulsive 
effect provided by 3BF for all momenta.  There is another be-
havior of single-particle potentials which show a significant 
deviation from a parabolic shape in particular at momentum 
slightly above the Fermi momentum kF when the exact treat-
ment of Pauli’s operator is chosen. 
The calculation of the SNM’s and PNM’s EOS has been per-
formed within BHF theory using 2BF and 3BF. It is found that, 
in the case of SNM, the EOS is strongly over bound using only 
the N3LO 2BF in the BHF approach compared to other interac-
tions. Both the CD Bonn and V18 give a quite different satura-
tion point and overall EOS, but the introduction of the same 
3BF shifts both EOS towards each other and close to phenom-
enology. On the contrary, this behavior is different when the 
results are done using the chiral N3LO plus 3BF. The bulk 
properties of infinite nuclear matter close to the empirical val-
ues when the 3BF is included to BHF approach. 
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