Loss minimization and Voltage Stability improvement with integration of Multiple DG's into the distributed System

Rudresha S J¹, Dr. Shekhappa G. Ankaliki² and Dr.T. Ananthapadmanabha³ ¹Research Scholar, ²Professor and HOD, EEE, ³Principal ^{1,2}S.D.M.C.E.T, Dharwad ³NIE IT, Mysuru

Abstract— These One of the modern and important techniques in the electrical distribution systems is to solve the networks problems service availability, high loss and to improve system voltage these can be resolved by accommodating small scaled de-centralized generating stations in networks, which is known as Distributed Generation (DG).Distributed generation (DG) units reduce electric power losses and hence improve reliability and voltage profile. Determination of appropriate size and location of DG is important to maximize overall system efficiency. In this paper, a method has been presented to determine the appropriate size and proper location of DG in a distribution network in order to reduce the losses and improve the voltage stability in the distributed system. In this work the IEEE 33-Bus system is simulated in Power World Simulator (PWS) and the voltage magnitude and system losses are analyzed with one and two DGs. Simulation result shows that optimal placement and sizing of DG will reduce the system losses and improve the voltage profile improvement is more with multiple DGs compare to one DG placed in the distribution system.

Index Terms— Distributed generation, Optimum size, Optimum location, Power loss, Sensitivity analysis, voltage stability

1 INTRODUCTION

A traditional electrical generation system consists of large power generation plants, such as thermal, hydro, and nuclear. Because these plants are located at significant distances from the load centers, the energy must be transported from the power plants to the loads through transmission lines and distribution systems. These plants, transmission lines, and distribution systems are currently being utilized to their maximum capacity, but the load demand is growing. This increase in load demand requires that new generation power plants be built and that the transmission and distribution systems be expanded, neither of which is recommended from an economic or environmental perspective [1].

Therefore, interest in the integration of distributed generation (DG) into distribution systems has been rapidly increasing, distributed generation is defined as small-scale electricity generation fuelled by renewable energy sources, such as wind and solar, or by low-emission energy sources, such as fuel cells and micro-turbines[2].

DG units are typically connected so that they work in parallel with the utility grid, and they are mostly connected in close proximity to the load [3]. DG units have not so far been permitted without a utility grid. However, the economic advantages of utilizing DG units, coupled with the advancements in techniques for controlling these units, have led to the definite possibility of these units being operated in an autonomous mode, or what is known as a micro grid. Hence, distribution systems with embedded DG units can operate in two modes: grid-connected and autonomous mode.

In grid-connected mode, although the voltage and frequency are typically controlled by the grid and the DG units are synchronized with the grid, integrating DG units can have an impact on the practices used in distribution systems, such as the voltage profile, power flow, power quality, stability, reliability, and protection [4]. Since DG units have a small capacity compared to central power plants, the impact is minor if the penetration level is low. However, if the penetration level of DG units increases the impact of DG units will be profound. Furthermore, if the DG units operate in autonomous mode, as a micro grid, the effects on power system stability and quality are expected to be more dramatic because of the absence of the grid support [5].

2 STATEMENT OF THE PROBLEM

Interest in Distributed Generation (DG) in power system networks has been growing rapidly. This increase can be explained by factors such as environmental concerns, the restructuring of electricity businesses, and the development of technologies for small-scale power generation. DG units are typically connected so as to work in parallel with the utility grid; however, with the increased penetration level of these units and the advancements in unit's control techniques, there is a great possibility for these units to be operated in an autonomous mode known as a micro grid.

Integrating DG units into distribution systems can have an impact on different practices such as voltage profile, power flow, power quality, stability, reliability, and protection. The impact of the DG units on stability problem can be further

classified into three issues: voltage stability, angle stability, and frequency stability. As both angle and frequency stability are not often seen in distribution systems, voltage stability is considered to be the most significant in such systems [6].

In fact, the distribution system in its typical design doesn't suffer from any stability problems, given that all its active and reactive supplies are guaranteed through the substation. However, the following facts alter this situation:

- With the development of economy, load demands in distribution networks are sharply increasing. Hence, the distribution networks are operating more close to the voltage instability boundaries [7].
- The integration of distributed generation in distribution system introduces possibility of encountering some active/reactive power mismatches resulting in some stability concerns at the distribution level [8].

The inappropriate size and allocation of DG can cause low or over voltage in the distribution system leading to voltage instability. Therefore, another goal of our analysis is to check whether the voltage profile remains within permissible limit. So, voltage constraint becomes,

$$V\min \le V \le V\max$$
(1)

During this analysis, as per the standard we considered 6% variable voltage as acceptable stable voltage limit i.e. Vmin=0.94 p.u and Vmax=1.06 p.u.In the following section, we will show how optimum size and location of DG impacts on voltage level of the interconnecting buses.

3 PROPOSED ANALYSIS METHOD

In our analysis, Based on sensitivity, a new methodology has been proposed to calculate optimum size and location of DG using power world simulator package in order to reduce the losses and improve the voltages at the different buses which improves the voltage stability in the system. The results obtained from placing one DG and two DGs in distribution system are analysed.

4 FORMULA TO FIND SENSITIVITY

For any distribution system, if DG size is varied from P_{DG1} to P_{DG2} and their corresponding change in power loss is respectively P_{L1} to P_{L2} , then the sensitivity factor becomes,

$$dP_{L}/dP_{i} = (P_{L1}-P_{L2})/(P_{DG1}-P_{DG2})$$
(2)

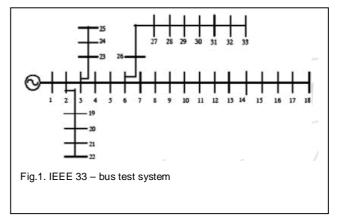
In our analysis, Sensitivity factors are evaluated for each bus using equation and the bus with maximum sensitivity is identified. Only those buses which have sensitivity factors close to the maximum value have been considered in our analysis. Thus solution space is reduced to only a few buses. After that, for each of these buses, power loss has been determined using large step size of DG variation and then graph is drawn using these few samples.

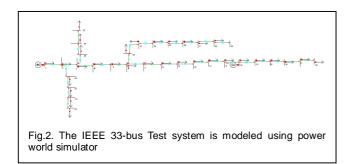
The minimum value of the curve that represents the min-

imum loss gives the optimum size for that bus and corresponding generation is the optimum DG size. The bus which is responsible for minimum loss of the system is the appropriate location for DG allocation.

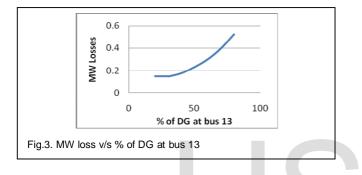
5 STEPS TO CARRY OUT SIMULATION USING POWER WORD SIMULATOR

The following steps are carried out to model the test system in the power world simulator


- Draw the buses and enter the data.
- Draw the transmission lines and enter the data as given in the test system.
- Draw the generators and enter the data.
- Draw the load and enter the data.
- Now run the model and observe the voltage at all the buses and total losses in the system without DG.
- Calculate sensitivity of each bus with small penetration of DG
- Make list of most sensitive buses
- Select a bus from the list and calculate power loss for large variation of DG size
- Continue until power loss starts to increase and record each sample
- Check whether all sensitive buses have been analyzed
- Find the bus which has minimum power loss
- Find corresponding DG size
- Find the voltages at all the buses with optimum DG size and location
- Check for voltage stability of the system
- If the voltage stability is not maintained at all the buses then increase the DG size at a optimum location until the voltage stability is maintained


6 SIMULATION RESULT AND DISCUSSION

The proposed method has been applied to a standard 33bus system which have been taken as the bench mark problem in many IEEE papers.


6.1 IEEE 33 - BUS TEST SYSTEM

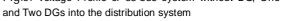
Proposed method is applied to 33-bus system using power world simulator.

By applying the proposed method as given in the algorithm the minimum MW loss is occurred when distributed generation is incorporated at bus 13 with 30 % of generation and it is shown in figure 3.

Therefore the bus -13 can be chosen as optimum location due to minimum losses with 30% DG at bus -13

The voltages at bus -13 with this 30% of DG are not within the limits therefore in order to obtain the voltage within the limits and to maintain the voltage stability in the system % DG is increased at bus -13 till the voltages at the all the buses are within the limits. In this case for 50% of DG at bus -13, all the bus voltages are within the limits.

The comparison of voltages at the various buses with and without DG is shown in figure .4


6.2 Analysis of power loss & voltage stability with integration of two DG's

Power loss and voltage stability analysis is done by placing two DGs in the 33-bus system.DG1 is placed at optimal location with optimal size which is 13 bus with 30% obtained from the above mentioned sensitivity factor method and DG2 is placed at bus 33 which is the last bus having low voltage and size of DG2 is 20% of total generation at slack bus. The table below gives the DG size, location, losses and percentage reduction in losses in 33-bus system.

TABLE 1
COMPARISON OF REAL AND REACTIVE POWER LOSSES
IN IEEE-33 BUS SYSTEM

Cases		NO	One	Two
		DG	DG	DG
DG Capacity	DG1	-	2.025 / 1.260	1.215 / 0.756
(MW/MVAR)	DG2	-	-	0.810 / 0.504
DG	DG1	-	13	13
Location	DG2	-	-	33
Active Power Loss in MW		0.33	0.20	0.066
Reactive power Loss in Mvar		0.22	0.09	0.041
Percentage Reduction in	P Loss	-	39.39	80
Losses	Q Loss	-	59.09	81.36

ment of DG

7. CONCLUSION

Proper Size and location of DG are important factors in the application of DG for loss minimization and voltage stability improvement. This paper presents an algorithm to calculate the optimum location of DG at various buses and to identify the best size corresponding to the optimum location for reducing total power losses and improve the voltage profile in primary distribution network. In this paper IEEE-33 bus system is taken for analysis of Power loss with one and Two DGs and simulation is done using power world simulator software, the results shows that the location of the DG has a main effect on the power losses and Voltage stability can be improved by selecting proper size of DG at a selected optimal location in distribution system and also the results shows that loss reduction with multiple DGs is more compare to single DG.

REFERENCES

- Ackermann, T.; Andersson, G.; Soder, L. (2000), Distributed generation: a definition," Electric Power System Research, Vol. 57, pp. 195-204.
- [2] IEEE Std. 1547-2003, "IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems," 2003.
- [3] P. Dondi, D. Bayoumi, C. Haederli, D. Julian, and M. Suter, "Network integration of distributed power generation," J. Power Sources, vol. 106, pp. 1-9, 2002.
- [4] V.V Thong, J. Driesen and R Belmans, "power quality and voltage stability of distribution system with distributed energy resources. "International Journal of Distributed energy Resource, Vol. 1, No. 3 PP.227-240, 2005.
- [5] N. Hadjsaid, J. F. Canard, and F. Dumas, "Dispersed generation impact on distribution networks," IEEE Comput. Appl. Power, vol. 12, pp. 22-28, 1999.
- [6] P.Sindhu Priya and N.Chaitanya kumar reddy "Optimal placement of the DG in radial distribution system to improve the voltage profile". International Journal of Science and Research, ISSN :2319-7064,2015.
- [7] Lopes, J.A.P (2002), Integration of dispersed generation on distribution networks – impact studies, PES Winter Meeting, IEEE, Vol. 1, pp.323-328.
- [8] C. Borges and D. Falcao, "Impact of distributed generation allocation and sizing on reliability, losses and voltage profile," in Power Tech Conference Proceedings, 2003 IEEE Bologna, vol. 2, june 2003
- [9] Yuvaraj Thangaraja, Ravi Kuppan, "Multi-objective Simultaneous Placement of DG and DSTATCOM Using Novel Lightning Search Algorithm", Journal of Applied Research and Technology (2017) 477–491
- [10] Pankita Mehta, Praghnesh Bhatt, Vivek Pandya, "Optimal Selection of Distributed Generating Units and it Placement for Voltage Stability Enhancement and Energy Loss Minimization", Ain shams engineering journal volume 9, issue 2, June 2018, Pages 187-201

