Leakage Power Minimisation in memory design using an adaptive technique to optimize the Body Biasing Voltage

Asmita Pattnaik, Kanan Bala Ray

Abstract— Here the discussion and analysis is based on an adaptive technique that has been done using 180nm Technology in Cadence. It is being used with the memory design of 6T SRAM cell for Leakage power minimization in the Standby mode of operation, SNM based calculation to check the stability of the circuit. This Adaptive system used over here to provide an optimal value of the body bias voltage which will increase the threshold voltage and the leakage reduction will occur in whole standby process as well as an effective compensation of the process and temperature variations.

Index Terms— BTBT,CMOS, DIBL,GIDL,Leakage Mechanisms of short channel devices, 6T SRAM,Sub-Threshold Leakage, SNM,Adaptive Reverse Body Bias Technique.

1 INTRODUCTION

According to Margala(2006), “there is a rapidment of VLSI and this has decreased the device tries and increased transistor densities of integrated circuits and circuits with high complexities and high frequencies have been started to emerge but these circuits consume an excessive amount of power and generate an increased amount of heat” [9]. Thus, it is always apparent that circuits with excessive power dissipation are less reliable and more susceptible to runtime errors. Due to these concerns, the importance of low power come into picture infront of the designers and improving energy efficiency at all levels of the design. Thus due to low power in memories can improve the system power-efficiency, performance, reliability and overall costs. SRAMs are now a days used for designing the low power low voltage memory design especially for all sophisticated electronics devices. Hence further research is going on to achieve more success in this ground, basically on the leakage power minimization. As leakage power minimization is the most sensitive as well as a dominant feature in the VLSI designing, so it has been taken here as a crucial issue of discussion in this paper. The common problem in all these methods is that they reduce the leakage power only in the standby mode. In this paper a method has been proposed that the reduction must be there in both active as well as standby mode. Here the leakage power reduction has been done using leakage power reduction circuits.

As per previous study which has been done before that SRAM is known for its low standby leakage power, and 95% of area of a system is devoted to its memory. Usually, 6T SRAM also known for its high speed as compared to DRAM. According to the demand of our day to day life we are using the various electronics devices which we need to be more portable, less power consuming, less area, high speed and more life span of the battery. And in those electronic systems some memory devices are also used like RAM, ROM. In case RAM, basically they are of two types SRAM and DRAM. SRAM is faster as compared to DRAM but consumes more Power. These issues are the main aspects of my motivation. The main motive is to design the 6T SRAM circuit which will consume less power and will have high SNM using a low power consuming device. Also the aim is to design a circuit in which power of the 6T SRAM must be reduced to an acceptable value. Till date whatever paper has been published was based on the standby mode power reduction. So in this paper, the trail is on the reduction of the power in both standby mode as well as active mode by using various techniques and power reducing circuits. Here as per the study current generator, current differentiator and an adaptive reverse body bias circuit has been used for the power reduction forming a feedback loop for the target circuit (6T SRAM).

1.2 SECTION

The rest part of paper composed of discussion on related work which is done in previous issue in section 2, includes the discussion on the papers that have been taken as reference and the discussion about all basic concepts of SRAM, its Leakage power and the current components. Section 3, includes the discussion on the working of the proposed design for leakage power reduction. Section 4 includes the simulated results of the work. Section 5 is about the Conclusions and finally, the report end with Acknowledgement and References.

2 RELATED WORKS

There are several designs have been proposed previously keeping various designing aspects in focus i.e., density, area, low
voltage and timing specification. Fig.1.[6] describes the designing of a 6T SRAM, in similar manner the designing variation have been done using 4T to 10T.

In case of the 5T SRAM, it is based on the asymmetric cross-coupled inverter with a single bit line [4]. The bit line has been pre-charged with separate voltages. Though there been used separate voltages for pre-charge, still then in the intermediate cases of voltages a dc-dc converter in required due which the requirement of additional design margin would be needed for the PVT corners which would violates its applicability.

Then comes the 6T design, in which two cross-coupled inverters are connected back to back having two NMOS as the access transistors. Write operation is done by the modulation of the virtual VDD and virtual VSS [4].

In case of the 7T, it has separate read port and the write operation. In case of the single-ended design the write operation have been done either due to asymmetrical inverter characteristics or differential VSS/VCC bias. And during the read operation the extra transistor turned off. When 7T design operates in differential mode the feedback path between the two inverters get cut-off during the write operation [4].

In 8T design, resembles 6T SRAM only there are the extra transistors connected to the later design for the separate read and write operation.

Then for 9T SRAM design the bit-cell is designed with differential read which is considered to be a disturb-free operation [4]. And in 10T design, single-ended resembles the single-ended 8T designs read and write operation.

2.1 LEAKAGE CURRENT COMPONENTS IN CMOS

In this part of the paper a discussion is on the basic components of the leakage current in CMOS. The Paper which were discussed over here are taken to analyse the leakage power reduction by the use various circuits [1]. As per the previous study which have been done that the analysis is done on the leakage power reduction of various circuit like interrupt controller, 12-bit SEC circuit, 16-bit SEC/DED circuit, 12-bit ALU and controller, 9-bit ALU, 32-bit adder/comparator.
2.1.1. a Junction Leakage

The leakage current occurs when the P-N junction in MOSFET is reverse biased and the current which is generated moves from the source or drain towards the substrate. And this is basically happens when the transistors are in OFF state or in other words we can say in the STAND BY mode. As the leakage occurs at the junction end it so called as Junction leakage. A P-N junction when get reversed biased the leakage which occurs is due to two major components: a) minority carrier diffusion/drift b) electron-hole pairs. These two components occurs basically in the depletion region. Instantly, when we provide a low voltage as input to an inverter it gets an high output voltage as, the PMOS is ON state and the NMOS goes to OFF state. Hence, the voltage at the drain-substrate of NMOS is equals to supply voltage. Hence a leakage current gets generated at the drain towards substrate. If both p and n regions are heavily doped, band-to-band tunnelling (BTBT) dominates the p-n junction leakage as the leakage current is also dependent on the doping concentration and area of the diffusion region at the drain end. Junction leakage also depends upon high temperature. Therefore, Junction leakage is negligible as compared to other leakage components.

2.1.1. b Gate-Induced Drain Leakage

In MOS transistors the gate induced drain leakage (GIDL) occurs due to the high field effect in the drain junction. In an NMOS transistor when the gate is grounded and drain is at VDD, the bend at band gap in the drain generates electron-hole pair by avalanche multiplication and band-to-band tunnelling. As the holes are rapidly moves towards the substrate a deep depletion region is created. So at the same time, as the electrons are present in the drain region and as they are majority factor for current, a current source occurs called GIDL current. Due to the high drain to body voltage and high drain to gate voltage leakage mechanism is made worse. The halo implants increases due to the transistor scaling, where the substrate doping at the junction interfaces is increases, while the channel doping is low. Basically, to have control over the punch-through and DIBL when there arises a low impact on the carrier mobility in the channel [3].

2.1.1. c Gate Direct Tunnelling Leakage

The gate direct tunnelling leakage flows from the gate through the “leaky” oxide insulation to the substrate mechanisms for direct tunnelling arises due to hole tunnelling in the valence band and electron tunnelling in the conduction band as well as in the valence band. From all these three electron tunnelling at the conduction band is the dominant one. The magnitude of the gate direct tunnelling current increases exponentially with the gate oxide thickness supply voltage VDD and Tox.

2.1.1. d Sub-threshold Leakage

“Sub-threshold leakage is the drain-source current of a transistor operating in the weak inversion region which is different from the concept of the strong inversion that drift current dominates, the sub-threshold conduction is due to the diffusion current of the minority carriers in the channel for a MOS device” [12]. Moreover, an inverter produces high output voltage with low input voltage by making the NMOS off. Even though VGS is 0V, it still a current flowing in the channel of the off state NMOS transistor due to the VDD potential of the VDS. The magnitude of the sub-threshold current depends on threshold voltage (VT) and it plays a dominant role as compared to other parameters.

2.1.1. e Total Leakage current

The Ioff is the leakage current when a transistor is in OFF state (when VGS = 0V for an NMOS device). Hence as per the discussion

$$I_{off} = I_{rev} + I_{GIDL} + I_{sub}$$

When VDS = VDD, the Irev and IGIDL increases in their magnitude.
Similarly, I_{sub} increases with V_{DD} because of the DIBL effect due to the short-channel effect [10]. Among the three components of I_{off} (total leakage current); I_{sub} is clearly the dominant component. Hence the main target is now to work on I_{sub} so that leakage power can get reduced i.e., by decreasing the sub-threshold leakage currents in circuits that are in ACTIVE or STANDBY state [10].

2.1.1 f Body Bias Control and Scaling of Power Supply

According to Farzan Fallah and Massoud Pedram(2005), “the best way to decreasing the leakage current is by using reverse-body bias (RBB).With the help RBB the threshold voltage can get increased when the transistors is in the STANDBY mode. By reverse biasing a transistor increases its threshold voltage and it can be done during standby, by applying a strong negative bias to the NMOS bulk via a charge pump and connecting the PMOS bulks (N wells) to the V_{DD} rail.But when the reverse body biasing (RBB) is applied to the PMOS transistors by raising the N-well voltages, a triple-well technology, which may not always be available. Because the threshold voltage changes with the square root of the reverse bias voltage, a large voltage may be necessary to get a small increase in the threshold voltage. As a result, this method becomes less effective as the supply voltage is scaled down. On the positive side, with RBB, the IC logic state is retained while in the STANDBY mode, allowing operation to resume where it suspended [10].”

2.2 BASICS OF SRAM (STATIC RANDOM ACCESS MEMORY)

- The SRAM cell incorporates a static latch, comprising two cross-coupled inverters, so that it does not require periodic refreshing to retain the stored information, provided that there is adequate power supply voltage for the cell (V_{DD}, cell).

- In which the two cross coupled inverters are connected back-to-back (there are two PULL UP transistors and two PULL DOWN transistors). There are two access transistors. When the horizontally-running word-line (WL) is enabled (i.e., a row is selected in an array), the access transistors are turned on, and connect the storage nodes to the vertically-running bit-lines (BL and BL). In other words, they allow access to the cell for read and write operations, acting as bidirectional transmission gates.

- The 6T SRAM design 1) READ operation-the bit-lines are pre-charged to high voltage V_{DD} and the word line is selected to high value. And then the word-line is selected (pulsed to a high level). On the side of the cell storing a logical ‘0’ (i.e., a low voltage), the bit-line is discharged via the pass-gate transistor and pull-down transistor, so that a differential voltage develops between the bit-lines. This differential voltage should be large enough for a sense amplifier to detect the state of the cell. The differential voltage should not be too large, however; otherwise the cross-coupled inverters could flip their state. (The read operation should be non-destructive.) The cell beta ratio, which is the ratio of the strength (drive current) of the pull-down transistor to that of the pass-gate transistor, should be sufficiently large to ensure that such a read disturbance does not occur.

- (2) WRITE operation, the bit-lines are driven to complimentary voltage levels via a write driver and then the word-line is selected. On the side of the cell for which the bit-line voltage is logical ‘0’ (i.e., a low voltage), the internal storage node is discharged through the pass-gate transistor. The cross-coupled inverters raise the voltage on the opposite storage node and latch the cell. The discharging strength of the pass-gate transistor must overcome the restoring strength of the pull-up transistor. The cell gamma ratio, which is the ratio of the strength of the pass-gate transistor to that of the pull-up transistor, should be sufficiently large to ensure that write failure does not occur.

- (3)STANDBY, means when the word line is not asserted, and then the two access transistors disconnect the cell from the bit lines. The two cross-coupled inverters formed by four transistors will continue to reinforce each other as long as they are connected to the supply.

2.3 STATIC NOISE MARGIN OF THE SRAM

As per the study in the year 1987, the most important metric for the SRAM is the read stability of the circuit, which is in other word called the Static Noise Margin (SNM). SNM is the maximum tolerable DC noise voltage at a storage node that does not cause a read disturbance, and it is the length of the diagonal of the largest square that can fit into the “eyes” of the butterfly curves, i.e., the read voltage transfer characteristics (VTC), for the SRAM.
SNM calculation: We have done the SNM calculation by this way with respect to above butterfly curve: SNM = ‘Maximum length between the corner of the square’. Maximum length between the corner of the square = Maximum lengths of diagonal of Square / Square Root of 2. So, SNM = Maximum length of diagonal of square / Square Root of 2. [9]

As per the study of Shelendra Singh Tomar, Madhav Singh and Shyam Akashe (2011)” The “butterfly” curve used to measure the static noise margin. The static noise margin of SRAM cell depends upon the cell ratio (CR), supply voltage and also on the PULL- UP ratio. For stability of the SRAM cell, good SNM is required which depends upon the cell ratio, supply voltages and the PULL-UP ratio. CELL ratio is the ratio between the sizes of the driver transistor to the load transistor during the read operation. PULL-UP ratio is the ratio between the sizes of the load transistor to the access transistor during the write operation” [11].

2.3.1 SNM DEPENDENCE

1) SUPPLY VOLTAGE-

The modulation of the power supply voltage the SRAM cell gets affected on the ground of its stability. The SNM also depends upon the supply voltage (Vdc), from previous analysis the SNM value increases as we increase the supply voltage, basically during the read operation.

2) BIT-LINE VOLTAGE-

Bit-line voltage modulation is calculated by pre-charging bit-lines at the full power supply voltage. In Fig.6 the graph demonstrates the value of SNM improves by decreasing bit-line voltage as compared to the Vdc variations during the read operation.
3) WORD-LINE VOLTAGE-

In the Fig.7 as per the analysis shown that, the minimization of maximum voltage so that the swing of the word-line to sustain the cell access transistor during the read operations [8]. The word line voltage when get reduced the SNM get increased during the read operations with respect to the supply voltages.

3 DISCUSSION ON PROPOSED DESIGN

The output generated from the body bias regulator circuit is again fed back to the current difference generator circuit. The loop goes on till an optimal value is generated as Vbody. This Vbody will provided to the target circuit i.e., 6T SRAM as a input. The Optimal value of the Vbody will increase the V_{TH} of the transistor in SRAM and the leakage power will get reduced as the circuit operates at high threshold.

CURRENT DIFFERENCE GENERATOR CIRCUIT

The Current difference generator circuit has current mirror circuit and current differential amplifier circuit which will produce the two different current that is ∆I = I1 - I2 and ∆I = I2 - I1. Hence , ∆I = - ∆I. There are two cluster circuits connected to the drain end of the current mirror so that the current will get replicated.

CURRENT COMPARATOR CIRCUIT

The current comparator circuit as shown in Fig.9 is getting its input from the current difference generator circuit which is preceding to the respective circuit. As the comparator circuit work as a class AB amplifier, so two different output is generated as UP and DOWN signal through four different logic gates. These outputs will be fed as inputs to the successive circuit, which is the charge pump circuit along with its output stage.
Finally, the optimal value of as Vbody will be maintained and supplied as input to 6T SRAM which is the target circuit to minimize the leakage by calculating it from leakage current which is taken from the OFF state transistors.

\[P_{\text{leakage}} = I_{\text{leakage}} \times V_{\text{DD}}. \]

4 SIMULATED OUTPUT AND RESULTS

The whole design has to satisfy three conditions:

- 1) \(I_1 < I_2 \), UP=0 & DOWN =1, \(V_{\text{body}} \) decreases to reduce the total leakage.
- 2) \(I_1 > I_2 \), UP=1 & DOWN = 0, output of \(V_{\text{body}} \) regulator increases.
- 3) \(I_1 = I_2 \), \(\Delta I_1 = 0 = \Delta I_2 \), then an optimal value of the body bias found and that is to be maintained.

The charge pump circuit gets input from the comparator as UP and DOWN signal. As the capacitor connected to it gets charged and discharged it produces output in the form of two different voltages at its output stage.

The Total power consumption also gets reduced by use of this technique of adaptive reverse body bias. Leakage current also get reduce to about 6.023pA. The result is discussed in the tabular form showing the minimum leakage power.
TABLE 1: RESULT DISCUSSION OF POWER CONSUMPTION IN 180nm TECHNOLOGY

<table>
<thead>
<tr>
<th>CIRCUIT DESIGN</th>
<th>Leakage Power</th>
<th>SNM</th>
</tr>
</thead>
<tbody>
<tr>
<td>conventional 6T SRAM</td>
<td>924.5E-6</td>
<td>463.23 mV</td>
</tr>
<tr>
<td>6T SRAM with sense amplifier</td>
<td>693.3E-6</td>
<td>416.07 mV</td>
</tr>
<tr>
<td>6T SRAM with ARBB circuit</td>
<td>11.05E-12</td>
<td>491.44 mV</td>
</tr>
</tbody>
</table>

5 CONCLUSIONS

This paper gives a summary that as the leakage power is an important aspect and it plays a dominant role in the total power of the design. Therefore, more attention have to be paid to the standby leakage power. The leakage can also be reduced if we do constant field scaling i.e., by reducing the supply, the threshold increases but it remain fixed at a certain value and beyond it we can increase just by providing it a reverse body bias. But again there a problem to increase the threshold to which value, hence to get an optimal condition the Adaptive Body Bias in an recommendable techniques which after following an feedback loop and satisfying certain condition will provide an optimal value as body voltage to the target circuit transistors. So, in this manner the threshold increases and leakage reduces without any violation to the performance of the target circuit.

ACKNOWLEDGEMENT

First of all I would like to thank my guide Assistant Prof. Kanan Bala Ray & Prof. S.K. Mandal, Controller Examination, Electronics & Electrical Engineering Department, School of Electronics Engineering, KIIT University, Bhubaneswar for guiding me throughout the research part of the thesis. I really am privileged to have opportunity to work with him. I will also thank Assistant Prof. J.K. Das in my research work. I am also thankful to all the staffs & employees of School of Electronics Engineering, KIIT University. Also I want give my deep sense of gratitude to the incharge of Cadence Lab and to all my friends and classmates for their support.

REFERENCES

[12] Vijay Kumar Sharma and Surender Soni, “Lowpower...

Author(s) Details

Asmita Pattnaik is currently pursuing masters degree program in VLSI & Embedded System Design in KIIT University. asmita027@gmail.com.

Kanan Bala Ray is currently pursuing PH.D in VLSI & Embedded System Design in KIIT university.bikashkanan@gmail.com.