Abstract—For images corrupted with Gaussian noise, the wavelet thresholding proves to be an effective approach to remove as much noise while retaining important signal features, but the performance decreases under heavy noise because the amount of noise is not considered while denoising. This paper aims at implementing an efficient image denoising method adaptive to the noise and is achieved by using an adaptive wavelet packet thresholding function based on a modified form of overcomplete wavelet representation. The adaptive algorithm is called OLI – Shrink and certain changes have been applied to the original form of overcomplete representation so that it becomes perfectly compatible for the application of OLI-Shrink. The performance of the algorithm is evaluated by computing the Peak Signal to Noise Ratio (PSNR) and a new performance measure called the Universal Image Quality Index (UIQI) and is found to outperform various existing wavelet based denoising algorithms.

Index Terms—Adaptive thresholding algorithm, coefficient thresholding, image denoising, optimal wavelet basis (OWB), over-complete representation, subband weighting function, wavelet packet transform.

1 INTRODUCTION

Visual information transmitted in the form of digital images is becoming a major method of communication in the modern age, but is often corrupted with noise either in its acquisition or transmission. The goal of denoising is to remove the noise while retaining as much as possible the important signal features such as edges, textures etc. The wavelet based approach is the best option for denoising images corrupted with Gaussian noise. In wavelet domain, noise is uniformly spread throughout the coefficients while most of the image information is concentrated in the few largest ones. This idea is the basis of denoising by means of coefficient thresholding.

Conventional methods do not take the intensity of noise into consideration and is therefore operating in a similar manner to images containing noise at different levels. So a new method is to be designed such that as the noise content varies, the value of threshold must also change and the denoising algorithm must be adaptive to noise. In other words, the denoising should be based on an adaptive thresholding function. This paper aims at implementing such an efficient image denoising method based on a new adaptive wavelet packet thresholding function. The new technique called Optimized Linear Interpolation Shrink or OLI-Shrink algorithm is a wavelet based adaptive thresholding algorithm and operates on the image on the basis of the estimated noise and is hence an adaptive technique. The new value an optimum value found using MAP based estimation rules incorporating the data mean, noise variance, and certain weighting constants depending on both data and noise parameters. The overall denoising achieved by applying the OLI-Shrink method as part of the overcomplete wavelet (OCW) representation. Overcomplete wavelet representation improve SNR of simple DWT based methods by averaging the results obtained via separate independent methods.

A high quality image is taken and some known noise is added to it. This would then be given as input to the denoising section, which produces an image close to the original high quality image. The performance of most of the algorithms are evaluated by computing the Peak Signal to Noise Ratio (PSNR) but this does not give any implication on the perceived quality. So a new image quality index introduced to compare images based on their visual quality which is known as the Universal Image Quality Index (UIQI).

2 BASIC WAVELET DENOISING

The concept of wavelets was introduced in 1984 for analysing the information content of images. Later, Stephane G. Mallat introduced a theoretical foundation for multiresolution signal decomposition which is technically termed as the wavelet representation. Wavelets are mathematical functions that cut up data into different frequency components and then study each component with a resolution matched to its size. The analysis involves adopting a prototype wavelet function called mother wavelet. Wavelet systems are generated from single scaling function by scaling and translation. The original signal can be represented in terms of wavelets using the coefficients in a linear combination format. They are advantageous over the traditional Fourier methods in analysing signals that contain discontinuities and sharp spikes. Wavelet transform generates sequence of signals known as approximation signals with decreasing resolution supplemented by a sequence of additional touches called details.

• Jitha C. R. has received Bachelor of Technology in Electronics and Communication Engineering from Mahatma Gandhi University, Kerala, India in 2012 and Master of Technology in Communication Engineering from Mahatma Gandhi University, Kerala, India in 2014.
Wavelets help to remove noise through the technique called wavelet shrinkage or thresholding methods. When a signal is decomposed using wavelet, the resultant is a set of data called the wavelet coefficients. Some of them contain the majority of signal data while others correspond to details. If the details are small, they might be omitted without substantially affecting the main features of interest. If the coefficients below a certain threshold are truncated the data is sparsely represented and this sparse coding makes wavelets an excellent tool in data compression and removing noise. So the idea of thresholding is to set to zero all coefficients that are less than a particular threshold. These coefficients are used in an inverse wavelet transformation to reconstruct the data set.

Wavelet denoising involves three steps:

1) A linear forward wavelet transform
2) Non-linear thresholding
3) A linear inverse wavelet transform

Thresholding is a non-linear technique which operates on one wavelet coefficient at a time. The smaller coefficients are more likely due to noise and large coefficients due to important signal features. Hence thresholding smaller ones help to avoid noise. Each coefficient is thresholded by comparing against a threshold. To remove noise, the choice of threshold is extremely important. It should not be too small or too large. If the threshold value is too small, most of the noise remains whereas a large threshold fails to preserve image features. Hence an optimum value is essential. Wavelet shrinkage depends heavily on the choice of thresholding parameter and the nature of the thresholding function.

3 EXISTING METHODS

Denoising via wavelet packet (WP) base was introduced in 2007. Unlike wavelet transform, the wavelet packet transform (WPT) decomposes both approximation and detail subbands. Thus the resulting wavelet packet decomposition consists of more subbands than corresponding wavelet decomposition. At every decomposition level, all the subbands are subdivided. The main advantage of such a decomposition is that a minimal representation can be obtained by suitably choosing which subbands to split and thus a choice can be made between several possible combinations of subbands.

A prominent denoising method was introduced by G. Deng, D. B. H. Tay, and S. Marusic which was based on overcomplete wavelet representation and Gaussian models [2]. The method uses a signal estimation technique based on multiple wavelet representations called the overcomplete representation. But no algorithm was specified to achieve the expected result. Also, WPT was not used. A denoising algorithm using WPT with a new type of thresholding is the optimum linear interpolation method put forward by Abdolhossein Fathi and Ahmad Reza Naghsh Nilchi [1].

4 PROPOSED METHOD

Overcomplete wavelet representation uses two or more similar wavelets to denoise a noisy image. Here, the pairs of wavelets used are either similar in properties or originate from a single wavelet by means of double shifting or reversing. Some pairs used include sym12 and coif4, sym4 and db4, sym12 and sym12d, coif4 and coif4d, sym12 and sym12r, coif4 and coif4r.

A modified form of the conventional over-complete representation is used here. Instead of WT for signal decomposition, WPT is used and then optimal wavelet basis (OWB) is found. Another difference is that the Walsh Hadamard Transform (WHT) and the inverse WHT are not used.

Also the forward transforms involve conditional decomposition of the input image using selected wavelet pairs. The coefficients thus obtained are the noisy coefficients and so a MAP denoising algorithm is applied which estimates the noise. The algorithm is based on an adaptive thresholding function. Then an optimum interpolation function is used in the thresholding step which more effective than the conventional hard or soft thresholding rules. After modifying each and every coefficient present, a new set of coefficients is obtained. Finally, this undergo inverse WPT and and is averaged. The proposed method is depicted in Fig. 1.

Thus, the overall method is implemented by applying the OLI-Shrink method as the denoising block of the modified overcomplete wavelet representation. The various steps involved in the process may be summarized as in Fig. 2.
sets independently undergo MAP based denoising process using the same denoising algorithm. Computation of the threshold value and application of thresholding algorithm together forms the denoising step. Denoised coefficients are converted to spatial domain by inverse wavelet packet transform. The denoised images can be averaged to get final outputs.

5 Wavelet Packet and the Optimal Wavelet Basis (OWB)

Since the image is a 2-D signal, there exists a quad tree in the wavelet decomposition. Thus any image can be transformed into four pieces or subbands normally labelled as the LL, LH, HL and HH as shown in Fig.3.

The traditional DWT decomposes a signal by subdividing or splitting the low resolution subband (i.e. LL) only. But the wavelet packet transform is obtained by splitting all the four subbands resulting in a full quaterinary tree.

There are more than one basis functions possible for this type of a transform. But the optimal representation basis is selected by optimizing a function known as the “cost function” in each subband. The cost function determines the cost value for each node and its children in the full binary tree obtained earlier. A cost function is used to choose between alternative bases. The Shannon entropy of the coefficients of a particular subband S is computed as:

$$SE(S) = - \sum S_i^2 \log(S_i^2)$$

where S_i corresponds to the coefficients of subband S.

The algorithm compares the cost values of parent node with their children nodes. If the sum of the cost values for all the children is lower than that of their parent node, then the children are retained, otherwise they are eliminated retaining only the parent node. The cost value computation is recursively repeated for all the nodes of the tree. The resulting tree is a basis that has the least cost among all the possible bases in this tree. So it is also called as the best basis or the optimal basis.

In the decomposition method described in the algorithm, the image is not completely decomposed into a full WP tree. Instead, at each node, the splitting of nodes is carried out only after satisfying the entropy based condition where, a parent node is decomposed into four child nodes if and only if the entropy reduces on splitting. Thus for every node, splitting takes place only if there is a reduction in entropy.

6 Fast OWB Extraction

The older methods for basis extraction used the bottom-up procedure starting from the deepest level of the tree and proceeded back towards the root to extract the optimal basis from the full WP tree of an image. Starting from the leaf nodes or the deepest level of the tree, these algorithms eliminated the quads of nodes that had cost higher than that of their parent node at each level, working back towards the root. The computational complexity of this algorithm is high since it requires two passes over the tree for selection of basis. So instead, an alternative fast method is adopted here in which the criteria for selection is applied simultaneously with the tree growing step.

The method for extracting OWB is a top-down search algorithm. This algorithm starts at the root and generates the optimal basis tree without growing the tree to full depth. Hence this approach is fast and computationally effective. The Shannon entropy is used to compare between parent node and descendents and produce the optimal wavelet basis.

6.1 Algorithm for Fast OWB Extraction

STEP 1: Choose L as the maximum number of WP decomposition levels.

STEP 2: While the current level of decomposition d is less than L, do steps 1 to 5 for each existing subband S_d^i where index is in $0 \leq i < 4^d - 1$.

1. Compute Shannon entropy $SE(S_d^i)$ for that subband.
2. Decompose S_d^i into four children nodes (L_d^i, L_d^{i+4}, H_d^{i+2}, H_d^{i+3}).
3. Compute the Shannon entropy of each node as: $SE(L_d^i), SE(H_d^{i+2}), SE(H_d^{i+1})$ and $SE(H_d^{i+3})$.
4. If $SE(S_d^i) < \{ SE(L_d^i) + SE(H_d^{i+1}) + SE(H_d^{i+3}) + SE(H_d^{i+4}) \}$, then retain the parent alone and eliminate children. Otherwise, retain both parent and children nodes.
5. Continue till the process of OWB extraction reaches the end where there are no nodes to split.

The reason behind selection of OWB is its dynamic decomposition nature in forming subbands. Thus the wavelet basis will be different for the same signal having different noise levels.
After finding out the basis and the corresponding threshold values for all existing subbands, the thresholding function need to be obtained. It is the thresholding function that actually does the process of “keeping” or modifying the necessary subband coefficients and “killing” all unwanted ones. Thus the thresholding function necessarily enhances or eliminates the wavelet coefficients. There are many rules for thresholding.

In hard thresholding algorithm, the wavelet coefficients \((Y_{ij}^S) \) less than the threshold \(\lambda_S \) are replaced with zero. All others are kept unmodified. The hard thresholding rule is defined as follows:

\[
\delta_{\lambda_S}^H(Y_{ij}^S) = \begin{cases}
0, & \text{if } |Y_{ij}^S| \leq \lambda_S \\
Y_{ij}^S, & \text{if } |Y_{ij}^S| > \lambda_S
\end{cases}
\]

In soft thresholding algorithm, however, the wavelet coefficients \((Y_{ij}^S) \) less than the threshold \(\lambda_S \) are replaced with zero and others are modified by subtracting the threshold value \(\lambda_S \) from the current value of coefficient \(Y_{ij}^S \) as per the following rule:

\[
\delta_{\lambda_S}^S(Y_{ij}^S) = \begin{cases}
0, & \text{if } |Y_{ij}^S| \leq \lambda_S \\
\text{sign}(Y_{ij}^S) \left(|Y_{ij}^S| - \lambda_S \right), & \text{if } |Y_{ij}^S| > \lambda_S
\end{cases}
\]

The hard thresholding provides better edge preservation compared to soft, but noise will not be removed as good as by soft thresholding. The soft thresholding is more efficient and continuous, and yield better visually pleasing images than hard thresholding, but still it does not use the optimal value for modification of large coefficients. In order to overcome these limitations, the new algorithm is introduced. The thresholding function thus obtained for the algorithm uses a linear interpolation between each coefficient and mean value of the subband to calculate the modified version of coefficients. Hence it is named as Optimum Linear Interpolation or OLI-Shrink as it shrinks the coefficients in an optimum way. A notable feature of this thresholding is that it takes different values as threshold for different subbands and decomposition levels.

8 Threshold Value Determination

Threshold value selection is the most critical task in the process of wavelet based denoising algorithm. Before going into the algorithm for thresholding, the value of threshold must be evaluated. The adaptive threshold value is computed by analysing the statistical parameters of each subband coefficient. The threshold is not at all a constant value and is therefore calculated for all terminal nodes of the OWB tree. Due to this varying nature of threshold, the denoising algorithm becomes adaptive.

Finding an optimal value is not at all an easy task. The value must not be too small or too large. A small threshold may let noisy coefficients be admitted and hence the resultant image remains noisy. A large threshold sets a large number of coefficients to zero leading to smoothing of the image and may cause blurring and artifacts and hence the resultant images may lose some signal values or details. Therefore, an optimum threshold value is desired to minimize noise, which is adaptable also to each subband characteristics. A constant value will not give good result since the value suitable for one subband or level may not be the right choice for some other subband or level. Hence an optimal threshold value which is adaptable to each subband is desired to maximise the signal and minimize the noise.

Optimal threshold selection algorithm is used. In this algorithm, an adaptive threshold value \(\lambda_S \) for each subband \(S \) at level \(d \) is calculated as:

\[
\lambda_S = \alpha_{d,s} \left(\frac{\sigma_S^2}{\sigma_{X,S}} \right)
\]
where \(\sigma_s^2 \) and \(\sigma_S^2 \) are the variances of noise and clean image coefficients respectively in the subband \(S \). The noise is assumed to be an additive Gaussian white noise. Since the input noise variance is unknown, it can be estimated by applying the median estimator on the HH subband’s coefficients \(Y_{ij}^{HH} \) as

\[
\hat{\theta}_n = \left(\frac{\text{median}(Y_{ij}^{HH})}{0.6745} \right)^2
\]

(5)

Since the noise is additive, the observation model can be described as \(Y_{ij} = X_{ij} + \eta_{ij} \), where \(Y_{ij} \) are the noise coefficients of subband \(S \), \(X_{ij} \) are the coefficients of the clean subband (noise free image) and \(\eta_{ij} \) are the noise coefficients. Assuming that \(Y_{ij}^{HH} \), \(X_{ij}^{HH} \), and \(\eta_{ij}^{HH} \) have generalised Gaussian distribution models their variances can be written in the form

\[
\sigma_s^2 = \sigma_S^2 + \sigma_h^2
\]

where \(\sigma_s^2 \) is the variance of coefficients \(Y_{ij} \) in subband \(S \). From this relation, the signal variance can be derived as

\[
\sigma_s^2 = \max(\sigma_S^2 - \sigma_h^2, 0)
\]

In previous methods, the term \(\alpha_{d,s} \) was set to one, but here, \(\alpha_{d,s} \) value is employed to make the threshold suitable in each decomposition level and the subbands within. In other words, \(\alpha_{d,s} \) is set so as to get a larger threshold for high frequency subbands based on their level of decomposition.

\(\alpha_{d,s} \) term makes the threshold value more dependent on level \(d \) and subband \(s \). Since image information exists more in the low frequency subband than in the high frequency subband and since the probability of existence of noise in the high frequency component is greater, applying a greater threshold value to the high frequency subband reduces the effect of noise more effectively. Also for two successive levels, as the level of decomposition is increased, the frequency bandwidths of the created subbands become more limited. So, the threshold value for L1 should be greater than L2 because the high frequency components of L1 need to be larger than L2. Thus \(\alpha_{d,s} \) makes the threshold value level and subband dependent.

The indexing \(i \) is done with the decomposition level taken as the highest level \(L \). Subbands at \(L^n \) level are labelled from left to right end for horizontal and from top to bottom for vertical function as shown in Fig. 6. For each and every subband present in the decomposition, there will be a particular value for SWF in both horizontal and vertical directions based on the index values.

The number of subbands is different for different levels. 4 subbands for level 1, 16 for level 2, 64 for level 3 and so on. For maximum decomposition level \(L \), the index value \(j \) starts from 1 to \(2^L \) each in horizontal and vertical directions and are labelled as in Fig. 6. The indexing for maximum level \(L = 4 \) is illustrated.

For a node at any level \(L \) the value of index \(i \) and \(j \) respectively in horizontal and vertical directions, may be between 1 and \(2^L \). The value of \(\alpha_{d,s} \) for each subband \(s \) at each level \(d \) is calculated as the sum of SWF values in horizontal (SWF\(_H\)) and vertical (SWF\(_V\)) directions that span by subband \(s \) as

\[
\alpha_{d,s} = \sum_i \text{SWF}_H(i) + \sum_j \text{SWF}_V(j)
\]

(6)

Thus, by employing the term \(\alpha_{d,s} \), the proposed threshold becomes level and subband dependent. The subband weighting function (SWF) in horizontal (SWF\(_H\)) and vertical (SWF\(_V\)) directions at each level makes \(\alpha_{d,s} \) dependent on level \(d \) and subband \(s \). This function should be an increasing function on both horizontal and vertical directions. From among the various increasing functions, a better result was obtained when the SWF is defined as

\[
\text{SWF}_{H/V}(i) = \frac{i^2}{2\pi} \quad \text{for } i = 1, 2, ..., 2^L
\]

(7)

where \(i \) is the index of subbands at the highest level of decomposition in horizontal and vertical directions, when the decomposed subbands are arranged in the matrix structure. The factor \(2^{2L} \) is used to normalize the SWF because in level \(L \), since there are \(2^L \) subbands in each direction.

After computing SWF values the term \(\alpha_{d,s} \) is obtained. The variances are also estimated using the above mentioned equations. Substituting these values in the equation for \(\lambda_s \), the threshold value is obtained for a particular subband at a level. For each subband of each of the levels, the threshold value varies and is therefore computed for all the nodes.

Thus in order to determine the optimal threshold value \(\lambda_s \), certain other parameters have to be computed. All other parameters except the noise variance vary for different subbands of the OWB. Noise variance is a constant value for a selected image and is computed only once. So the determination of threshold value involves the following five steps.

8.1 Computation of SWF:

SWF is computed in two directions, horizontal and vertical. For the level \(L \), subband index takes only a single value and is used to calculate the function \(\frac{i^2}{2\pi} \). For all other levels L-1 to 1, index \(i \) takes several values. The SWF values are computed in the decreasing order of the levels, from L to 1.

The logic behind finding node index value \(i \) for subsequent nodes at level \(L \) is that for nodes 1 and 2 (i.e., LL and LH), the horizontal index is 1 and 2 respectively but the vertical index
is 1 for both the nodes. Similarly for nodes 3 and 4 (i.e., HL and HH), the horizontal indices are 1 and 2, but the vertical index is 2. Only after assigning index values, the SWF values can be evaluated.

Nodes at level 4 have single values for indices \(i \) and \(j \) in horizontal and vertical directions respectively. In Fig. 7, the 4th level nodes are colored as blue and having single \(i \) and \(j \) values. But for level 3 nodes of the OWB, index \(i \) and \(j \) takes two values. This is due to the fact that level 3 nodes are equivalent to the combination of four nodes at level 4. Level 3 nodes are colored yellow.

8.2 Computation of Weighting Factor \(\alpha_{d,s} \)

For a node at level \(d \) and subband \(s \), \(\alpha_{d,s} \) is the sum of horizontal and vertical subband weighting functions. Thus for every node of the OWB, the \(\alpha_{d,s} \) will be different due to the difference in \(d \) and \(s \). First, the SWF values in two directions are found. Then they are added to obtain the \(\alpha_{d,s} \) value for a particular node.

An important peculiarity of this term is that its value goes down as the level increases. This is because for the highest level the SWF is single indexed but for lower levels the value is cumulative, thereby giving the highest possible value for \(\alpha_{d,s} \) at the lower levels. Thus the value of \(\alpha_{d,s} \) is maximum for the lowest level and minimum for the highest level present in the tree. Another property of \(\alpha_{d,s} \) is that within the same level, the value increases with increasing index \(i \) since SWF is an increasing function in \(i \). So within a level, the value is minimum for a lower index subband than that of a higher index subband. Thus \(\alpha_{d,s} \) increases with \(s \) and decreases with \(d \).

8.3 Computation of Noise Variance \(\sigma_\eta^2 \)

Noise variance is a constant value for a selected image. So its value is same and for all of the subbands the same value of \(\sigma_\eta^2 \) is applied. Also it can be calculated prior to the computation of all other threshold related parameters since it is independent of node coefficients.

The value of \(\sigma_\eta^2 \) is unknown and therefore we estimate it by the median estimator applied on the coefficients of HH1 subband. The coefficients of node [1, 3] are required. The square of the median of the absolute coefficient value divided by 0.6745 is the estimate of noise variance denoted as \(\hat{\sigma}_\eta^2 \).

8.4 Computation of Signal Variance \(\sigma_\chi^2 \)

The variance of the signal is the variance of the coefficients of that subband for a noise free image. So for any selected node the signal variance is the variance of the wavelet packet coefficient matrix of that particular node. The value is not used as such in computing the threshold. But instead the square root of the signal variance is applied in the equation for threshold. So threshold directly depends on the standard deviation of the signal \(\sigma_\chi \).

The available coefficients do not correspond to the actual coefficients since they contain noise. To find the actual coefficients, the only way is to estimate it from the noisy coefficients. So the value of signal variance \(\sigma_\chi^2 \) has to be estimated using the variance of noisy coefficients \(\sigma_\eta^2 \) and the estimated noise variance \(\sigma_\eta^2 \).

Since the noise is additive in nature, the noisy coefficients \(Y_{ij} \) can be modelled as \(Y_{ij} = X_{ij} + \eta_{ij} \) where \(X_{ij} \) are the coefficients of the clean subband (noise free state) and \(\eta_{ij} \) are the noise coefficients. Assuming that all these three terms have generalised Gaussian distribution and since the clean image and the noise are independent, the variance terms may be equated as \(\sigma_Y^2 = \sigma_X^2 + \sigma_\eta^2 \). Here, the \(\sigma_X^2 \) term can be calculated as the variance of coefficients \(Y_{ij} \) in subband \(S \). From this relation, the signal variance \(\sigma_\chi^2 \) can be derived as \(\sigma_\chi^2 = \max(\sigma_Y^2 - \sigma_\eta^2, 0) \). So the value required in the threshold equation is the square root term \(\sigma_\chi = \sqrt{\max(\sigma_Y^2 - \sigma_\eta^2, 0)} \).

8.5 Computation of Threshold Value \(\lambda_s \)

After finding the values of the parameters \(\alpha_{d,s} \), \(\sigma_\eta^2 \) and \(\sigma_\chi^2 \), the threshold value \(\lambda_s \) is obtained as the ratio of noise variance to the square root of signal variance (SD of signal) multiplied by the weighting factor \(\alpha_{d,s} \). Thus the threshold value is dependent on the level \(d \) and subband \(s \). Even for different nodes of the same level, the threshold value will be different. Also for nodes at different level there is a significant variation in the range of threshold value. For higher levels the value is smaller compared to the value at a lower level. The threshold will be maximum for level 1 and goes on decreasing as the level increases.

A most important property of the threshold value is that it
must be relative to the values of the coefficients at different levels. The lower level coefficients are larger compared to the higher levels and therefore the threshold values also need to be larger at lower levels. Thus the adaptive threshold exactly follows this requirement due to the decreasing nature of $\alpha_{d,s}$ with increasing level.

All dynamic terms like $\alpha_{d,s}$ and $\sigma^2_{d,s}$ are computed prior to the computation of threshold λ_s for each subband s. The threshold meets all required conditions for its adaptive nature due to the presence of weighting function which is in turn due to the dependency of SWF on level d and subband s. Since SWF varies with d and s, the resultant threshold is clearly adaptive to d and s.

9 THRESHOLDING ALGORITHM

To overcome the shortcomings of the previously used hard and soft thresholding rules, a new algorithm is introduced. The principle behind all thresholding methods is that the coefficients smaller than a specific value or threshold are cancelled. The new thresholding algorithm called OLI-Shrink uses optimal linear interpolation between each coefficient and corresponding subband mean for the modification of dominant coefficients. The thresholding function is described as

$$\delta^{\text{OLI}}_{\lambda_s}(Y_{i,j}^s) = \begin{cases} 0, & |Y_{i,j}^s| \leq \lambda_s \\ Y_{i,j}^s - \beta(Y_{i,j}^s - \mu_s), & |Y_{i,j}^s| > \lambda_s \end{cases}$$

where μ_s is the mean value of the coefficient of subband s and β is computed as $\beta = \frac{\sigma^2}{(\sigma^2_s + \sigma^2)} \equiv \frac{\sigma^2}{\sigma^2_s}$. The thresholding function is derived using Bayesian MAP estimation of a signal from its noisy version. Thus the modified coefficient is estimated by a weighted linear interpolation of the unconditional mean and the observed value of coefficients. Hence this optimal linear interpolation between each coefficient and corresponding subband’s mean (MAP based) is combined with wavelet thresholding algorithm (based on adaptive threshold) to yield the proposed thresholding function $\delta^{\text{OLI}}_{\lambda_s}$. Based on these analyses, the efficient and simple to implement denoising algorithm may be summarised as follows:

9.1 Proposed Denoising Algorithm

STEP 1 : Perform WP decomposition to obtain OWB.

STEP 2 : Estimate noise variance, σ^2 for the image.

STEP 3 : For each subband S in level d, compute the statistical parameters:

- Subband variance $(\sigma^2_{d,s})$
- Subband mean (μ_s)
- Clean image variance (σ^2)
- Subband weighting factor $(\alpha_{d,s})$
- Coefficient weighting factor (β)

STEP 4 : Find the threshold value λ_s for all existing nodes.

STEP 5 : Threshold all subband’s coefficients using the proposed thresholding technique “OLI-Shrink”.

Apart from the threshold value λ_s certain other variables have to be evaluated before beginning with the thresholding algorithm. One is the subband mean μ_s which is the mean value of the coefficients of a selected subband s. This is calculated separately for every node present in the tree. Another term required in the thresholding function is the coefficient weighting factor β. It is computed as the ratio between noise variance and the sum of signal and noise variances. In other words, β can be approximated as the ratio of variance of noise η to the variance of the subband coefficients $Y_{i,j}$.

To apply the thresholding function, each of the coefficient values $Y_{i,j}$ is to be compared with the previously computed threshold value λ_s of the corresponding subband s. If the absolute value of coefficient is smaller than threshold, they are to be neglected and need not be considered while performing the inverse transform. Hence such terms are replaced by zero. Otherwise if the absolute values of coefficients exceed the threshold value of that subband, then they are to be modified to a new value determined by the properties of the subband which is in turn dependent on the terms μ_s and β. Thus the thresholding function is repeatedly applied to all the coefficients in all the subbands and the new values replace the old coefficients in the tree. Now a new tree is obtained as a result of the thresholding function $\delta^{\text{OLI}}_{\lambda_s}$. The modified tree with the new values of coefficients in every subband then undergoes an inverse wavelet packet transform to reconstruct the noiseless or the denoised image.

The thresholding function can be applied alike to both grayscale and colour images. The only difference is that the coefficient matrix is three dimensional. Hence denoising colour images will take more time than its grayscale counterpart.

10 DENOISING BY MODIFIED OVERCOMPLETE WAVELET REPRESENTATION

The overcomplete representation is a model based approach and its performance depends on how well the model fits the signal and how accurately the parameters are estimated. Here, a MAP-based approach is followed.

A signal estimation algorithm based on multiple wavelet representations and Gaussian models is utilised here. The proposed method consists of two major steps: optimum estimation of the wavelet coefficients and averaging of the separate denoised images. Using over-complete representations (multiple wavelet transforms) the important image features can be captured by using the least number of transform coefficients. Optimum estimation step is carried out by OLI-Shrink algorithm.

The effective image denoising algorithm is based on the maximum a posteriori (MAP) estimation principle. Here the idea of MAP-based estimation is extended to the use of two or more wavelets instead of a single wavelet.
The proposed method consists of two distinct WP transformations followed by a denoising algorithm resulting in two separate sets of wavelet coefficients. The optimal basis and MAP-based linear thresholding rules applied to both are the same. After denoising algorithm, the two WPTs undergo inverse transform and thereby produce two denoised images. In order to get a better result the average of the two is taken as final output. The entire algorithm can be summarised as follows:

10.1 Denoising Algorithm by Modified Overcomplete Wavelet Representation

STEP 1: Perform an L-level wavelet transformation of the noisy image along with OWB extraction procedure using two wavelets separately, producing two trees of wavelet coefficients.

STEP 2: Apply the denoising method based on adaptive thresholding function described by OLI-Shrink for the two trees producing two sets of modified coefficients (denoised coefficients).

STEP 3: Perform the inverse wavelet transformation resulting in two denoised images.

STEP 4: Take the average of the denoised images to give the final denoised image.

The method can be extended to using more than two wavelets for denoising. Thus the algorithm performs two or more individual MAP-based wavelet denoising process and takes the average of them as the final result.

For denoising, the best result giving OLI-Shrink algorithm is applied for thresholding. To demonstrate the performance of this denoising method, the pairs of wavelets with similar properties are tested. Wavelet pair sym12 and coif4 is chosen since the wavelet filters are of same length. Other types of wavelet pair that originate from one orthogonal wavelet are also taken. One way of forming such a pair is to use an orthogonal wavelet and its double shifted version. Another way of forming pair is to use an orthogonal wavelet and its reverse version. Both operations are achieved for orthogonal wavelets by double shifting or reversing the scaling filter. In actual implementation, double shifting corresponds to the double shifting of all filters while reversing corresponds to using reconstruction filter for decomposition and decomposition filter for reconstruction.

The averaging step improves the signal to noise ratio as long as the noises in each of the denoised images are not correlated. Achieving an acceptable result for OLI-Shrink requires independent calculation of parameters since each uses distinct wavelets for decomposition and threshold computation is done separately. Thus OC representation is the basic denoising strategy and its success lies in the efficiency of the denoising algorithm used in it. Both the approaches improve denoising and thus their combination leads to better result.

11 Performance Evaluation

The performance of the proposed noise reduction algorithm is measured with the help of quantitative performance measures such as peak signal to noise ratio (PSNR) and in terms of the visual quality of the images using universal image quality index (UIQI).

11.1 Peak Signal to Noise Ratio (PSNR)

The denoised image will never be same as that of the original image. So in order to represent the error between two versions of the same image, the mean squared error (MSE) is used. MSE between the original image X and the denoised image \(\hat{X} \) is given as

\[
MSE = \frac{1}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} (X(i,j) - \hat{X}(i,j))^2
\]

where M and N are the width and height of the image respectively. Now the PSNR is calculated on the basis of MSE. For the denoised image the PSNR is given by

\[
PSNR(X, \hat{X}) = 10 \log_{10}\left(\frac{255^2}{MSE}\right) dB
\]

11.2 Universal Image Quality Index (UIQI)

The performance of most of the algorithms is evaluated by computing the Peak Signal to Noise Ratio (PSNR) alone. The PSNR is purely a mathematical measure and does not contain any indication about the perceived quality. It was in 2002 that, Zhou Wang and Alan C. Bovik introduced a new objective image quality index called the Universal Image Quality Index (UIQI) [18] which signifies perceptual quality. UIQI is a new objective image quality index which signifies the perceptual quality of images and is calculated based on their visual quality. The index is universal in the sense it does not depend on the images being tested, viewing conditions or individual observers. The universal image quality index is given by:

\[
UIQI(X, \hat{X}) = \frac{4\sigma_{XX}M_XX}{\sigma_{XX}^2 + \sigma_{\hat{X}X}^2} \left(\frac{\mu_X + \mu_{\hat{X}}}{\mu_X^2 + \mu_{\hat{X}}^2}\right)
\]

where \(\sigma_{XX}\) is the covariance of X and \(\hat{X}\), \(\mu_X, \mu_{\hat{X}}\) are the mean values of X and \(\hat{X}\) and \(\sigma_{\hat{X}X}, \sigma_{XX}\) are the variances of X and \(\hat{X}\). UIQI is a real number between 0 and 1 inclusive. The best value UIQI = 1 is achieved if and only if X = \(\hat{X}\). UIQI is designed by modeling image distortion as a combination of three distortions related to correlation, luminance and contrast. UIQI models the total distortion in an image as a combination of the three factors:

1) Loss of correlation
2) Luminance distortion
3) Contrast distortion

UIQI represents each of them as

\[
UIQI = \frac{\sigma_{XX}}{\sigma_X \sigma_{\hat{X}}} \left[\frac{2\mu_X \mu_{\hat{X}}}{\mu_X^2 + \mu_{\hat{X}}^2}\right] \left[\frac{2\sigma_{XX} \sigma_{\hat{X}}}{\sigma_X^2 + \sigma_{\hat{X}}^2}\right]
\]

Here, the first term refers to the correlation coefficient that measures the degree of linear correlation between X and \(\hat{X}\) and lies in the range [-1, 1]. The second term is the luminance distribution that measures how close is the mean luminance between X and \(\hat{X}\). This value is in the range [0, 1] and is equal to 1 only if \(\mu_X = \mu_{\hat{X}}\). The last term is the contrast distribution which measures how similar the contrasts of the images X and \(\hat{X}\) are. This also lies in the range [0, 1] and becomes 1 if and only if \(\sigma_X = \sigma_{\hat{X}}\) since \(\sigma_X\) and \(\sigma_{\hat{X}}\) give an estimate of the contrasts of X and.
respectively. In short, images of better visual appearance have higher Q value. Thus it outperforms the MSE significantly in characterizing images under different types of image distortions.

12 RESULT AND DISCUSSION

The denoising is implemented and all the related decomposition, processing and reconstruction are done using MATLAB version 7.5.0, with the help of wavelet toolbox and associated functions. The entire algorithm can be applied to grayscale as well as color images identically.

The test images are contaminated by Gaussian white noise at eight different standard deviations $\sigma = 5, 10, 15, 20, 30, 40, 50, 60$. Noise addition is done by adding a random matrix multiplied by the noise variance to the image matrix. The MATLAB code for the entire procedure consists of around 800 lines. The code was run using Intel Core i5 processor with internal RAM capacity of 4 GB supported by a 64-bit Windows Home Basic operating system. The average computational time is 8 to 15 seconds for noise intensities of $\sigma = 5$ to $\sigma = 60$ and maximum decomposition level $L = 4$.

The OWB is a subtree that contains selected nodes and the decomposition is critical in applying the rest of the algorithm steps. The OWB obtained for several images is given in Fig. 8. The output of the denoising algorithm for various noise intensities are shown in Fig. 9. Images on the left correspond to the noisy input and those on right are the denoised images.

The PSNR values for the proposed method was found to be excellent compared to the previous methods available especially when the noise intensity is higher. Also the new index UIQI was found for the denoised images and the value is very close to 1. Maximum PSNR is obtained for smaller values of noise. The PSNR and UIQI plots obtained are given in Fig. 10. As the noise increases, the UIQI value also decreases for all the images under consideration. The notable feature is that even in presence of heavy noise, the algorithm produced better visual results in terms of UIQI. The value is always above 0.98 which indicates superior quality in noisy environments.

From the graphs it is clear that the visual quality of denoised image is better since the UIQI values are very near to unity. As noise increases, UIQI decreases, but does not go below 0.98. So the effectiveness of the algorithm is pretty good.

A comparison is made between the proposed method and other thresholding methods in Fig. 11. The PSNR and UIQI values were found to be superior for the proposed method than any available method.

13 CONCLUSION

On analysing various steps of the algorithm it was found that the new threshold value is level and subband dependent.
The new index UIQI better represents the visual quality than the PSNR. Optimum linear interpolation overcomes the limitations of both hard and soft thresholding techniques. PSNR and UIQI value of the proposed denoising algorithm outperforms other methods at various noise levels. Changing the maximum decomposition level resulted in slight variations in both PSNR and UIQI values. When noise free input is applied the algorithm enhances the images with PSNR around 50 dB and UIQI almost equal to 1. Analysis of experimental results obtained for different test images, under various noise levels, indicated that the output of this method is more visually pleasant. In addition, the computational cost is modest; and so it is suitable for many image processing applications, such as medical image analyzing systems, noisy texture analyzing systems, display systems, and digital multimedia broadcasting. The possible improvements include finding an effective way of reducing the computational time while using three or more wavelets for the method instead of two. The result may be improved by

![Fig. 9. Outputs of the proposed denoising method by modified overcomplete wavelet representation applying OLI-Shrink algorithm for thresholding. For each subimage, L is taken as 4. Images on the left are the noisy inputs with increasing noise content and those on the right are the denoised results. (a) Input noise $\sigma=5$, Output PSNR=32.8470 dB; UIQI=0.9992 (b) Input noise $\sigma=10$, Output PSNR=29.0943 dB; UIQI=0.9982 (c) Input noise $\sigma=15$, Output PSNR=26.9320 dB; UIQI=0.9970 (d) Input noise $\sigma=20$, Output PSNR=25.2988 dB; UIQI=0.9957 (e) Input noise $\sigma=30$, Output PSNR=23.0966 dB; UIQI=0.9928 (f) Input noise $\sigma=40$, Output PSNR=21.3730 dB; UIQI=0.9893 (g) Input noise $\sigma=50$, Output PSNR=20.1579 dB; UIQI=0.9859 (h) Input noise $\sigma=60$, Output PSNR=18.8881 dB; UIQI=0.9813]
increasing the number of decomposition levels used, number of wavelet denoising used in parallel and also by better methods of estimating subband noise. It can also be suggested that the proposed algorithm may be extended to video framework that may be very useful in video denoising.

REFERENCES

