INFLUENCE OF INJECTION PRESSURE ON PERFORMANCE OF SIMAROUBA BIODIESEL ENGINE

Sharun Mendonca, John Paul Vas, Raghu, Gangadhar Rao, Dr. Thomas Pinto, Dr. C.R. Rajashekar, Ramachandra C.G

Abstract—Efforts are being made throughout the World to reduce the consumption of liquid petroleum fuels wherever is possible. Biodiesel is recently gaining prominence as a substitute for petroleum based diesel mainly due to environmental considerations and depletion of vital resources like petroleum and coal. According to Indian scenario, the demand for petroleum diesel is increasing day by day hence there is a need to find out an appropriate solution. This study investigates influence of injection timing of 20% blend simarouba biodiesel on performance and emission characteristics. The effect of varying injection pressure was evaluated in terms of thermal efficiency, specific fuel consumption. At 250bar BSFC is decreased by 1.58%, BTE is increased by 9.47% for S20 compare to diesel at load 6.5N-m.

Index Terms— injection timing, simarouba, biodiesel, brake thermal efficiency, brake specific fuel consumption

1 INTRODUCTION

The recent survey on the world energy consumption highlights that a major portion of the total energy consumed is derived from the combustion of fossil fuels. Unfortunately, the reserves of fossil fuels, specially the liquid fuels are not unlimited and may exhaust, if not utilized economically, within few decades. Recently, there has been a growing concern about the increasing air pollution caused by the combustion of petro diesel. In addition, depleting resources of conventional fuels has caused an increase in its price. Biodiesel is a renewable fuel which is produced from vegetable oil or animal fat through a chemical process and can be used as either direct substitute, extender or as an additive to fossil diesel fuel in compression ignition engines. The most promising feature of biodiesel is that it can be utilized in existing design of diesel engine with no or very little modifications. It has a proven performance for air pollution reduction. Biodiesel is typically produced through the reaction of vegetable oils or animal fat with methanol or ethanol in the presence of catalyst to yield glycerol as major by product[1] (biodiesel chemically called methyl or ethyl ester). However, the price of biodiesel is presently more as compared to petro diesel [2]. Higher cost of biodiesel is primarily due to the raw material cost [3].One non edible biodiesel feedstock is simarouba glauca.

Evaluation of Simarouba esters indicates its superiority over many other vegetable oils in terms of engine performance, emissions, ease of use and availability. Simarouba glauca belongs to family simarubaceae, commonly known as “The Paradise Tree” or “King Oil Seed Tree”, is a versatile multipurpose evergreen tree having a height of 7-15 m with tap root system.
In India, it is mainly observed in Andhra Pradesh, Karnataka and Tamil Nadu etc. It can adapt a wide range of temperature, has the potentiality to produce 2000-2500 kg seed/ha/year; can grow well in marginal lands/wastelands with degraded soils and therefore considered as a major forest tree. All parts of Simarouba are useful in some way or the other. The plant is also known for its medicinal properties.

Simarouba seeds

An effort is made in this study to evaluate the effect of varying the injection timing on the combustion, performance and emissions of a 5.2 kW engine fuelled with simarouba methyl ester of this oil (S20) for establishing the appropriate injection timing. The aim was to establish the modifications required in small, constant speed, direct injection diesel engines, so that these can be made to run on Simarouba biodiesel (S20) with better performance and at the same time improve the emissions.

Biodiesel is produced by the transesterification of vegetable oils with alcohols to produce esters. [6]. Bio-diesel has become more attractive recently because of its environmental benefits and the fact that it is made from renewable resources [7]. Biodiesel has demonstrated a number of promising characteristics, including reduction of exhaust emissions [8]. Although there are many ways and procedures to convert vegetable oil into a Diesel like fuel, the transesterification process was found to be the most viable oil modification process [9]. Trans-esterification is the process of using an alcohol (e.g. methanol, ethanol or butanol), in the presence of a catalyst, such as sodium hydroxide or potassium hydroxide, to break the molecule of the raw renewable oil chemically into methyl or ethyl esters of the renewable oil, with glycerol as a by product. Glycerol is the major value-added by product produced from oil and fat from transesterification reactions performed during biodiesel manufacturing processes.

2. Properties of diesel and simarouba biodiesel

Property comparison of Diesel and Simarouba bio diesel are shown in table 1

<table>
<thead>
<tr>
<th>SL.N O.</th>
<th>Characteristics</th>
<th>Diesel</th>
<th>Simarouba 100%</th>
<th>Simarouba 20%(S20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Calorific value (KJ/Kg)</td>
<td>4300</td>
<td>39800</td>
<td>42360</td>
</tr>
<tr>
<td>2</td>
<td>Viscosity at 40°C</td>
<td>2.6-5</td>
<td>4.8</td>
<td>3.4</td>
</tr>
<tr>
<td>3</td>
<td>Cetane number</td>
<td>50</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>4</td>
<td>Flash point (°C)</td>
<td>55</td>
<td>165</td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>Specific gravity</td>
<td>0.84</td>
<td>0.867</td>
<td>0.8454</td>
</tr>
</tbody>
</table>

3. EXPERIMENTAL SET UP, PROCEDURE AND OBSERVATION
The experiment aims at determining appropriate proportions of biodiesel & diesel for which higher efficiency is obtainable. Hence, experiments are carried out at constant speed, comparing the performance of compression ignition engine operated on blends of diesel. The S20 blend is checked under loads 20%, 40%, 60% and 80% with injection timing 15.1°, 20.5° and 25.5°BTDC by constant injection pressure 200 bar and compression ratio 17.5. The samples are prepared by using the 1000 ml measuring jar and a 10 ml graduated test tube.

Fig.1 shows the schematic diagram of the complete experimental setup for determining the effects of waste cooking oil as bio diesel fuel additives on the performance and emission characteristics of compression ignition engine. It consists of a single cylinder four stroke water cooled compression ignition engine connected to an eddy current dynamometer. It is provided with temperature sensors for the measurement of jacket water, calorimeter water, and calorimeter exhaust gas inlet and outlet temperature. It is also provided with pressure sensors for the measurement of combustion gas pressure and fuel injection pressure. An encoder is fixed for crank angle record. The signals from these sensors are interfaced with a computer to an engine indicator to display P-Θ, P-V and fuel injection pressure versus crank angle plots. The provision is also made for the measurement of volumetric fuel flow. The built in program in the system calculates indicated power, brake power, thermal efficiency, volumetric efficiency and heat balance. The software package is fully configurable and averaged P-Θ diagram, P-V plot and liquid fuel injection pressure diagram can be obtained for various operating conditions.

Schematic Diagram

- **PT**: Combustion Chamber Pressure Sensor
- **F1**: Liquid fuel flow rate
- **PTF**: Fuel Injection Pressure Sensor
- **F2**: Air Flow Rate
- **F1**: Fuel Injector
- **F3**: Jacket water flow rate
- **FP**: Fuel Pump
- **F4**: Calorimeter water flow rate
- **T1**: Jacket Water Inlet Temperature
- **LC**: Load Cell
- **T2**: Jacket Water Outlet Temperature
- **CA**: Crank Angle Encoder
- **T3**: Inlet Water Temperature at Calorimeter
- **EGC**: Exhaust Gas Calorimeter
- **T4**: Outlet Water Temperature at Calorimeter
- **T5**: Exhaust Gas Temperature before Calorimeter
- **T6**: Exhaust Gas Temperature after Calorimeter
4. ENGINE SPECIFICATIONS

<table>
<thead>
<tr>
<th>SL.NO</th>
<th>Engine parameters</th>
<th>specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Engine type</td>
<td>TV1(Kirloskar , four stroke)</td>
</tr>
<tr>
<td>2</td>
<td>Rated power</td>
<td>5.2 KW at 1500 rpm</td>
</tr>
<tr>
<td>3</td>
<td>Bore</td>
<td>87.5 mm</td>
</tr>
<tr>
<td>4</td>
<td>Stroke</td>
<td>110 mm</td>
</tr>
<tr>
<td>5</td>
<td>Cubic capacity</td>
<td>661 cc</td>
</tr>
<tr>
<td>6</td>
<td>Compression ratio</td>
<td>17.5:1</td>
</tr>
<tr>
<td>7</td>
<td>Injection pressure</td>
<td>200 bar</td>
</tr>
<tr>
<td>8</td>
<td>Injection timing</td>
<td>20.5° BTDC</td>
</tr>
</tbody>
</table>

5. RESULTS AND DISCUSSIONS

Brake specific fuel consumption

Brake thermal efficiency at 250bar S20 increases 1.58% compare to diesel for load 6.5N-m.

6. Conclusions

At 250bar brake thermal efficiency is increased by 9.47%, brake specific fuel consumption is decreased by 1.58% S20 compare to diesel at load 6.5N-m. By increasing injection pressure most of the emission decreased for S20 compare to diesel at 300bar.

APPENDIX

BSFC- BRAKE SPECIFIC FUEL CONSUMPTION

BTE - BRAKE THERMAL EFFICIENCY

S20-SIMAROUBA 20% BLEND DIESEL

REFERENCES

(2005).

