Hardening of RC Beam & column Junction by utilizing Fiber Sheet

Dr.R.S.Talikoti¹, Prof. A.J.Mehetre², Er.M.A.Nawale³

Abstract— This paper will give the information about strengthening of different parameter by using CFRP & GFRP. Strengthening of existing structures has become a major part of construction activity in our country. Many civil structures are no longer safe due to increased load specifications in the design codes. The beam column joint is the crucial zone in a reinforced concrete moment resisting frame. It is subjected to large forces during severe ground shaking and its behaviour has a significant influence on the response of the structure. The assumption of joint being rigid fails to consider the effects of high shear forces developed within the joint. The shear failure is always brittle in nature which is not an acceptable structural performance especially in seismic conditions. The revisions of Indian code provisions have necessitated strengthening of several existing structure in country.

Index Terms— Deflection, Flexure, fiber reinforced polymers, Strengthening of RC-Beam columns joint, epoxy resin, shear, ultimate load etc.

I INTRODUCTION

In RC buildings, beam-column joints are subjected to large forces during severe ground shaking and its behaviour has a significance influence on the response of the structure. Hence beam-column joint is the crucial zone in a reinforced concrete moment resisting frame. The revisions of Indian code provisions have necessitated strengthening of several existing structure in country. In the analysis of reinforced concrete moment resisting frames the joints are generally assumed as rigid. In Indian practice, the joint is usually neglected for specific design with attention being restricted to provision of sufficient anchorage for beam longitudinal reinforcement. This may be acceptable when the frame is not subjected to earthquake loads.

II. MATERIAL AND METHODOLOGY

In this paper two type of material used

1) Carbon fibre reinforced polymer (CFRP) :- Each carbon filament thread is a bundle of many thousand carbon filaments. A single such filament is a thin tube with a diameter of 5–8 micrometers and consists almost exclusively of carbon. The earliest generation of carbon fibers (e.g. T300, and AS4) had diameters of 7–8 micrometers. Later fibers (e.g. IM6) have diameters that are approximately 5 micrometers. Carbon fiber is an extremely lightweight reinforcing fiber derived from the element carbon.

The carbon atoms are bonded together in crystals, The crystal alignment gives the fiber high strength-to-volume ratio.CARBON FIBRE +PLASTIC RESIN=CFRP

2) Glass fibre reinforced polymer (GFRP) :- Fiberglass or GFRP, is a fibre reinforced polymer made of a plastic matrix reinforced by fine fibers of glass. Fiberglass is a lightweight, extremely strong, and robust materi-
als. The plastic matrix may be epoxy, thermosetting plastic.

Common uses of fiberglass include high performance aircrafts, boats, automobiles, baths, hot tubs, water tanks, roofing, pipes, cladding, casts, Surfboards, and external door skins.

Application Procedure of GFRP & CFRP Wrapping:
1. Grinding the surface from joint up to 150 mm and to get an even surface. All projections are grounded off.
2. Apply embraced Primer to be prepared concrete surface area. Work site must be thoroughly ventilated during the application of chemicals.
3. Mix the two packed MBrace Saturant two packs and apply to the primed concrete specimen using brush.
4. The fibre sheet must be cut before application of MBrace Saturant into prescribed sizes using scissors or cutters.
5. On the saturant fix the sized glass fibre carbon fibre sheets and roll in the beam longitudinal direction.

III. RESULTS AND TABLES

Load Study:
With reference to the test results, the loads on ordinary specimens at first crack stage are compared to the loads on glass fiber specimens at first crack stage. It is observed that the load carrying capacity of glass fiber specimens are increased when compared to the ordinary specimens. From these values the percentage of increase in load carrying capacity of glass fiber specimens over ordinary specimens are tabulated in following table.

Table No 1: Comparison of load taken by ordinary and GFRP specimen.

<table>
<thead>
<tr>
<th>No of layers</th>
<th>Load (kN)</th>
<th>Percentage increase in strength</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ordinary Specimen</td>
<td>GlassFibre Specimen</td>
</tr>
<tr>
<td>1</td>
<td>6.83</td>
<td>8.2</td>
</tr>
</tbody>
</table>

Fig.1 Test setup ordinary specimen.

Fig.3 Test setup carbon specimen.

Load Study:

Fig.3 Test setup glass specimen.
With reference to the test results, the load on ordinary specimens at first crack stage are compared to the load on carbon fiber specimens at first crack stage. It is observed that the load carrying capacity of carbon fiber specimens are increased when compared to the ordinary specimens. From these values the percentage of increase in load carrying capacity of carbon fiber specimens over ordinary specimens are tabulated table 2.

<table>
<thead>
<tr>
<th>No of layers</th>
<th>Load (kN)</th>
<th>Percentage increase in strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>ordinary Specimen</td>
<td>6.83</td>
<td>8.6</td>
</tr>
<tr>
<td>Carbon Fiber Specimen</td>
<td>8.6</td>
<td>8.6</td>
</tr>
</tbody>
</table>

Table No 2: Comparison of load taken by ordinary and CFRP specimen.

3.1 Discussion on comparative result:

As per above test result it shows that the total average load of ordinary specimen 6.83KN and carbon fiber specimen 8.6 KN ,glass fiber specimen 8.2KN . deflection for 8.26mm will be taken by ordinary and carbon fiber specimen 7.12mm glass fiber specimen 7.13mm.It mean load carrying capacity increase of carbon specimen ,glass specimen and decrease deflection compare to ordinary specimen.

IV CONCLUSION

Based on the experimental investigations carried out on the ordinary and strengthened beam-column joint specimens using GFRP and CFRP wrapping, the following conclusions were drawn.

1. The strengthening technique using wrapping system for the damaged R.C.C interior beam – column joints have proved to be effective.
2. The rigidity and ultimate load carrying capacity of the strengthened beam was improved with decrease in deflections.
3. Glass composite materials can be efficiently used for strengthening and rehabilitation of reinforced concrete joints.

ACKNOWLEDGMENT

The authors are thankful to Prof. Dr. N.U.Mate, HOD Civil Engineering Dept. & Prof. M.R.Wakchaure, of Amrutvahini collage of Engineering, Sangamner, Maharashtra, India for providing the required facilities to complete these work.
REFERENCES


