Heat Conduction Problem for an Finite Elliptical Cylinder

S. D. Bagde and N. W. Khobragade

Abstract- This paper contains a heat conduction problem for an finite elliptical cylinder to determine the temperature distribution with the help of Mathieu transform and Marchi-Fasulo transform techniques

Key Words- Heat conduction problem, Finite elliptic cylinder, Mathieu transforms, Marchi-Fasulo transform

Ams Subject Classification No: 35-XXX. 44-XX. 80-XX.

1 INTRODUCTION

Integral transform technique plays important role in solving problem of applied Mathematics. Such problems have been out by Sneddon [3], Tranter [5] and Olcer [2]. Hankel Transform is used to solve circular boundary value problems. Analogous to Hankel Transform, Gupta [1] and Sharma [4] have investigated finite Mathiue Transforms.

In this paper, we have generalized the problem of Sneddon [3]. We consider the heat conduction in a finite elliptic cylinder

2. STATEMENT OF THE PROBLEM

Heat conduction equation in elliptical co-ordinates \((\xi, \eta)\) for elliptic cylinder as Mclachlan [8] is

\[
\frac{1}{k} \frac{\partial u}{\partial t} = \frac{2n^{-2}}{(\cosh 2\xi - \cos 2\eta)} \left(\frac{\partial^2 u}{\partial \xi^2} + \frac{\partial^2 u}{\partial \eta^2} \right) + \frac{\partial^2 u}{\partial z^2}
\]

\(\varphi(\xi, \eta, z, t) = a, u(a, \eta, z, t) = f(\eta, z, t) \)

\[
[u + k_1 \frac{\partial u}{\partial \xi}]_{\xi = -h} = 0
\]

\[
[u + k_2 \frac{\partial u}{\partial \xi}]_{\xi = h} = 0
\]

Require result : Finite Mathieu Transform,

If the function \(T(\xi, \eta) \) is continuous and single valued in the region

\[0 \leq \xi \leq a, \quad 0 \leq \eta \leq 2\pi \text{ and } \frac{\partial T}{\partial \xi} = 0 \text{ at } \xi = a \]

then finite Mathieu transform is defined as

\[f(q_{2n,m}) = \int_{0}^{2\pi} \int_{0}^{a} T(\xi, \eta)[\cosh 2\xi - \cos 2\eta] \cdot Ce_{2n}(\xi, q_{2n,m}) \cdot ce_{2n}(\eta, q_{2n,m}) \, d\xi \, d\eta \]

(2)

Where \(q_{2n,m} \) is a root of the equation

\[Ce_{2n}(a, q) = 0 \]

Then at any point within the range,

\[T(\xi, \eta) = \sum_{n=0}^{\infty} C_{2n} Ce_{2n}(\xi, q_{2n,m}) \cdot ce_{2n}(\eta, q_{2n,m}) \]

\[
= \sum_{n=0}^{\infty} \left[\sum_{m=1}^{\infty} C_{2n} Ce_{2n}(\xi, q_{2n,m}) \cdot ce_{2n}(\eta, q_{2n,m}) \right]
\]

(3)

Where constant \(C_{2n} \) is

\[
C_{2n} = \frac{\int_{0}^{a} \int_{0}^{2\pi} Ce_{2n}(\xi, q_{2n,m}) \cdot ce_{2n}(\eta, q_{2n,m}) \cdot d\xi \, d\eta}{\int_{0}^{a} \int_{0}^{2\pi} Ce_{2n}(\xi, q_{2n,m}) \cdot d\xi \, d\eta}
\]

(4)

\[
\bar{T}(q_{2n,m}) = \frac{\int_{0}^{a} Ce_{2n}^{2}(\xi, q_{2n,m}) \cdot d\xi}{\pi \int_{0}^{a} Ce_{2n}^{2}(\xi, q_{2n,m}) \cdot d\xi}
\]

(5)

b • Sunil D. Bagde, research scholar in the P.G Department of Maths, RTM Nagpur University Nagpur (E-mail: sunilkumarbagde@rediffmail.com).

b • N. W. Khobragade, Professor in the P.G Department of Maths, RTM Nagpur University Nagpur
\[\theta_{2n,m} = \frac{1}{\pi} \int_0^{2\pi} Ce_{2n}(\eta, q_{2n,m}) \cosh 2\eta \, d\eta \]

INVERSION FORMULA OF MATHIEU TRANSFORM

(6)

The inversion formula for Mathieu Transform is given by

\[T(\xi, \eta) = \frac{1}{\pi} \int_0^{2\pi} Ce_{2n}(\xi, q_{2n,m}) Ce_{2n}(\eta, q_{2n,m}) \frac{\partial^2 T}{\partial \xi^2} + \frac{\partial^2 T}{\partial \eta^2} \, d\xi \, d\eta \]

(7)

PROPERTIES OF FINITE MATHIEU TRANSFORM

\[a \frac{\partial^2}{\partial \xi^2} + \frac{\partial^2}{\partial \eta^2} \] \(Ce_{2n}(\xi, q_{2n,m}) Ce_{2n}(\eta, q_{2n,m}) \, d\xi \, d\eta \]

Taking

\[I_1 = \int \int Ce_{2n}(\xi, q_{2n,m}) Ce_{2n}(\eta, q_{2n,m}) \frac{\partial^2 T}{\partial \xi^2} \, d\xi \, d\eta \]

(8)

And

\[I_2 = \int \int Ce_{2n}(\xi, q_{2n,m}) Ce_{2n}(\eta, q_{2n,m}) \frac{\partial^2 T}{\partial \eta^2} \, d\xi \, d\eta \]

(9)

Now integration by parts we obtain

\[I_1 = 2\pi \int_0^{2\pi} Ce_{2n}(\eta, q_{2n,m}) \frac{\partial T}{\partial \xi} Ce_{2n}(\xi, q_{2n,m}) \, d\eta \]

\[+ \int \int T \frac{\partial^2}{\partial \xi^2} \{Ce_{2n}(\xi, q_{2n,m}) Ce_{2n}(\eta, q_{2n,m})\} \, d\eta \, d\xi \]

(10)

\[I_1 = 2\pi A_0^{(2n)} \left[Ce_{2n}(\xi, q_{2n,m}) \frac{\partial T}{\partial \xi} - T \frac{\partial}{\partial \xi} Ce_{2n}(\xi, q_{2n,m}) \right]_0^\alpha \]

\[+ \int \int T \frac{\partial^2}{\partial \xi^2} \{Ce_{2n}(\xi, q_{2n,m}) Ce_{2n}(\eta, q_{2n,m})\} \, d\eta \, d\xi \]

(11)

Since

\[Ce_{2n}(\xi, q_{2n,m}) = 0 \text{ and } \frac{\partial T}{\partial \xi} = 0 \text{ at } \xi = 0, \frac{\partial}{\partial \xi} Ce_{2n}(\xi, q_{2n,m}) = 0 \text{ at } \xi = 0 \]

\[I_1 = -2\pi A_0^{(2n)} T(\xi, \eta,t) Ce_{2n}(a, q_{2n,m}) - \frac{4q_{2n,m}}{h^2} kT - a_n T \]

(12)

\[I_2 = \int \int Ce_{2n}(\xi, q_{2n,m}) Ce_{2n}(\eta, q_{2n,m}) \frac{\partial^2 T}{\partial \eta^2} \, d\xi \, d\eta \]

\[+ \int \int T \frac{\partial^2}{\partial \eta^2} \{Ce_{2n}(\xi, q_{2n,m}) Ce_{2n}(\eta, q_{2n,m})\} \, d\eta \, d\xi \]

(13)

\[I_2 = 2\pi A_0^{(2n)} T(\xi, \eta,t) Ce_{2n}(a, q_{2n,m}) + kT - a_n T \]

(14)

Since

\[Ce_{2n}(\xi, q_{2n,m}) = 0 \text{ and } \frac{\partial^2}{\partial \eta^2} = 0 \text{ at } \eta = 0, \frac{\partial}{\partial \eta} Ce_{2n}(\xi, q_{2n,m}) = 0 \text{ at } \eta = 0 \]

\[I_2 = -2\pi A_0^{(2n)} T(\xi, \eta,t) Ce_{2n}(a, q_{2n,m}) - \frac{4q_{2n,m}}{h^2} kT - a_n T \]

3. SOLUTION OF THE PROBLEM

Multiplying \((\cosh 2\xi - \cos 2\eta) Ce_{2n}(\xi, q_{2n,m}) Ce_{2n}(\eta, q_{2n,m})\) in equation (7) and integrating w.r.t. \(\xi\) from 0 to \(a\) and w.r.t. \(\eta\) from 0 to \(2\pi\) and using properties of Mathieu Transform (6) we get

\[\frac{d\bar{T}}{dt} = -2\pi A_0^{(2n)} T(\xi, \eta,t) Ce_{2n}(a, q_{2n,m}) - \frac{4q_{2n,m}}{h^2} kT - a_n T \]

or

\[\frac{d\bar{T}}{dt} = -2\pi A_0^{(2n)} T(\xi, \eta,t) Ce_{2n}(a, q_{2n,m}) - kT - a_n T \]

(15)

Where

\[\lambda_{2n,m}^2 = \frac{4q_{2n,m}}{h^2} \]

or

\[\bar{T} = -2\pi A_0^{(2n)} T(\xi, \eta,t) Ce_{2n}(a, q_{2n,m}) + kT - a_n T \]

Which is an ordinary linear diff. Eqn.

\[I.F. = e^{k(\lambda_{2n,m}^2 + a_n^2) t} = e^{k(\lambda_{2n,m}^2 + a_n^2) t} \]

And solution is

\[\bar{T} e^{k(\lambda_{2n,m}^2 + a_n^2) t} = -2\pi A_0^{(2n)} Ce_{2n}(a, q_{2n,m}) \int \left[f(\eta,t) e^{k(\lambda_{2n,m}^2 + a_n^2) t} \right] d\tau + A \]

at \(t = 0, \bar{T} = 0, A = 0 \)

Hence

\[\bar{T} = -2\pi A_0^{(2n)} Ce_{2n}(a, q_{2n,m}) \int \left[f(\eta,t) e^{k(\lambda_{2n,m}^2 + a_n^2) t} \right] d\tau \]
Using inversion theorem of Mathieu Transform, and finite Marchi-Fasulo transform, we get

\[T(\zeta, \eta, z, t) = \sum_{n=0}^{\infty} \frac{P_n(\zeta)}{\lambda_n} \int \frac{e^{i \lambda_n \eta} \delta \cosh \theta_{2n+1}}{2} \int_{-\infty}^{\infty} e^{i \lambda_n \eta} \delta \cosh \theta_{2n+1} \int f(\eta, t) e^{-\lambda_n \eta} d\eta d\tau \]

(14)

4. CONCLUSION

In this paper the temperature distribution of an elliptical cylinder have been determined with the help of finite Mathieu transform and Marchi-Fasulo transform techniques. The expressions are represented graphically. The results that are obtained can be applied to the structures or machines in engineering applications.

Temperature

Acknowledgment

The authors are thankful to University Grant Commission, New Delhi for providing the partial financial support under Rajiv Gandhi National Fellowship Scheme.

References