
International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 1577
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Graphical Calculation of First and Follow Sets of
a Grammar

Dr. ASR Murty, Maria Navin J R

Abstract— This paper describes a graphical method for computation of First and Follow sets of non terminals of a grammar. First and
Follow sets play an important role during syntax analysis with LL and LR parsers. Calculation of First and Follow sets by traditional
methods can be tedious and error prone. Though First and Follow calculation is not new, the way it is represented graphically is very much
useful to a beginner for understanding the concept. In order to solve this problem a graphical method to obtain First and Follow sets is
proposed in this paper. We also perform a check on the correctness of First and Follow with the representation of derivations and a study
on the role of associativity for operators is presented.

Index Terms— graphical calculation, first, follow, context free grammar, parse trees, syntax analysis, precedence, associativity.
—————————— ——————————

1 INTRODUCTION
The types of parsers available are Universal parsers which can
parse any type of grammar, top down and bottom up parsers.
During the computation of parsing tables for top down and
bottom up parsing First and Follow sets are needed. The sub-
classes LL and LR of top down and bottom up methods can
express most of the constructs in programming languages [1].
These parsers need the calculation of First and Follow in the
initial step.

LR parsers are preferred over LL parsers as LL parsers trans-
form original grammar to new form for eliminating left recur-
sion and left factoring. This distorts the original grammar and
causes problems for syntax directed translation as it introduc-
es nulls. However, in deciding when to shift, when to reduce
and to decide what to reduce, the use of First & Follow is
made use of in LR, SLR, LR(k) item sets and LALR parsers.

2 CALCULATION OF FIRST AND FOLLOW
To compute First(X) for all grammar symbols, apply the Fol-
lowing rules until no more terminals or ε can be added to any
First/Follow set [2][3].
1. If X is terminal, then First(X) is X.
2. If X→ ε is a production, then add ε to First(X).
3. If X is non-terminal and X→Y1Y2…YK is a production, then
place a in First(X) if for some i, a is in First(Y i), and ε is in all of
First (Y1)…First (Y i-1); that is, Y1…Y i-1*=>ε. If ε is in First (Y j)
for all j=1,, k, then add ε to First(X).
Now define First(α) for any string α=X1X2…Xn as follows.
First(α) contains First(X1)-{ε}.For each i=2,…,n, if First(Xk) con-
tains ε for all k=1,…,i-1, then First(α) contains First(X i)-
{ε}.Finally, if for all i=1,…,n, First(X i) contains ε, then First(α)
contains ε.

Given a non-terminal A, the set Follow (A), consisting of ter-
minals, and possibly $, is defined as Follows.
1. If A is the start symbol, then $ is in Follow (A).
2. If there is a production B→ αAγ, then First (γ)-{ε} is in
Follow (A).

3. If there is a production B→ αAγ such that ε is in First (γ),
then Follow (A) contains Follow (B).

3 GRAPHICAL REPRESENTATION

3.1 First and Follow applied to 3 subgrammars
Consider a grammar A → BDE where A, B, D and E are non ter-
minals.

Here First goes from right to left and Follow goes from left to
right as shown at the top and bottom of the of production rule
respectively as shown in Fig. 3.1.1. First(A) ← First (B),
First(A) ← First(D) if B is nullable (← may be read as goes to),
First(A) ← First(E) if B & C are nullable, Follow (E) ← Fol-
low(A), Follow(D) ← Follow(A) if E is nullable and Follow(B)
← Follow(A) if D & E are nullable.

We now consider 3 cases where either B or D or E become sin-
gle terminal instead of non terminal.
Case 1: B is a single terminal b.
 A → bDE(1)

D → d(2) | ε(3)

E → e(4) | ε(5)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 1578
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

As there are 3 non terminals A, D and E, we draw 3 rectangu-
lar boxes for First and 3 rectangular boxes for Follow one be-
low another. The box divided into 2 parts. In the bottom part
we are writing the First/Follow of the non terminal that can be
directly inferred from the production rules. The corresponding
production rule is indicated as a super script at the corre-
sponding terminal.

Some terminals may have to be included due to nullability of
non terminals in First/Follow calculations. When a terminal is
to be included in First/Follow set, it is included/written at the
top and the rules responsible/applicable for it are indicated on
the arrow connecting the related non terminals.

Follow(E) ← Follow(A) (rule 1)
Follow(D) ← Follow(A) (rule 1 & 5)
Follow(D) ← First(E) (rule 1)

These 3 inferences are indicated by connecting First and Fol-
low boxes of appropriate non terminals in the directions indi-
cated by ←. After the boxes are connected, the top portions of
the boxes are filled using the connectivity of the boxes exclud-
ing ε. Now the corresponding First & Follow sets can be filled
by looking at Fig. 3.1.2.

Case 2: D is a single terminal d.

 A → BdE(1)
B → b(2) | ε(3)
E → e(4) | ε(5)

First(A) ← First(B) (rule 1)
Follow(E) ← Follow(A) (rule 1)
Follow(B)=d (rule 1)
First(A)=d (rule 1 & 3)
Hence First(A)=d=Follow(B)
This is indicated by connecting Follow(B) to First(A). Now the
corresponding First & Follow sets can be filled by looking at
the Fig. 3.1.3.

Case 3: E is a single terminal e.
 A → BDe(1)

B → b(2) | ε(3)
D → d(4) | ε(5)

First(A)=e=Follow(D) (rule 1, 3 & 5)
First(A) ← First(B) (rule 1)
First(A) ← First(D) (rule 1 & 3)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 1579
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Follow(D)=e (rule 1) (bottom of Follow of D)
Hence Follow(D) is connected to First(A).
Follow(B) ← First(D) (rule 1, connect First(D) to Follow(B))
Follow(B)=e (rule 1 & 4)
Now the corresponding First & Follow sets can be filled by
looking at the Fig. 3.1.4.

3.2 Applying the graphical method to Expression
Grammar

For a grammar to be in LL(1) initially Left Recursion and Left
Factoring must be removed.
Consider a grammar A → Aα | β this grammar produces the
language βαn (n≥0). Hence to remove Left Recursion the above
grammar can be written as
 A → βA’

A’ → αA’ | ε

Now consider the expression grammar with + and * operators.

E → E+T | T
T → T*F | F
F → id | (E)

After the elimination of left recursion from the above expres-
sion grammar we arrive at

 E → TE’(1)

 E’→ +TE’(2) | ε(3)
 T → FT’(4)

 T’→ *FT’(5) | ε(6)
 F’→ id(7) | (E)(8)

Directly by looking at the rules of the grammar we can calcu-
late the First and Follow sets as
First(E’) ← {+, ε} (rule 2 & 3)
First(T’) ← {*, ε} (rule 5 & 6)
First(F) ← {id, (} (rule 7 & 8)
Follow(E) ← {)} (rule 8)

These are written in the bottom of the boxes of First of E’, T’, F
and Follow box of E. Now using the First(E’), First(T’), First(F)
and Follow(E) we can calculate the following as indicated by
the arrows and graphical method given in section 3.1 can be
applied to expression grammar in a similar manner. The ob-
tained results are described in Fig. 3.2.
Follow(E’) ← Follow(E) (rule 1)
Follow(T) ← Follow(E) (rule 1 & 3)
First(E) ← First(T) (rule 1)
Follow(T’) ← Follow(T) (rule 4)
Follow(F) ← Follow(T) (rule 4 & 6)
First(T) ← First(F) (rule 4)
Follow(F) ← Follow(T’) (rule 5 & 6)
Follow(T) ← Follow(E’) (rule 2 & 3)
Follow(T) ← First(E’) (rule 1)
Follow(F) ← First(T’) (rule 4)

3.3 Understanding/correctness of First and Follows for
the Expression Grammar.

First and Follow can be calculated using the rules of the
grammar and as per the definition of First and Follow. This is
called as Brute Force approach and it is used to verify the pro-
posed graphical method.

Calculation of First
E → TE’ (rule 1)
 → FT’E’ (rule 4)
 → idT’E’ (rule 7)
First(E)={id}

E → TE’ (rule 1)
 → FT’E’ (rule 4)
 → (E)T’E’ (rule 8)
First(E)={(}

E’ →+TE’ (rule 2)
First(E’)={+}

E’ → ε (rule3)
First(E’)={ε}

T → FT’ (rule 4)
 → (E)T’ (rule 8)
First(T)={(}

T → FT’ (rule 4)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 1580
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

 → idT’ (rule 7)
First(T)={id}

T’ → *FT’ (rule 5)
First(T’)={*}

T’ → ε (rule 6)
First(T’)={ε}

F → (E) (rule 8)
First(F)={(}

F → id (rule 7)
First(F)={id}

Calculation of Follow
E → TE’ (rule 1)
 → FT’E’ (rule 4)
 → (E)T’E’ (rule 8)
Follow(E)={)}

E → TE’ (rule 1)
 → FT’E’ (rule 4)
 → (E)T’E’ (rule 8)
 → (TE’)T’E’ (rule 1)
Follow(E’)={)}

E → TE’ (rule 1)
 → T+TE’ (rule 2)
Follow(T)={+}

E → TE’ (rule 1)
 → FT’E’ (rule 4)
 → (E)T’E’ (rule 8)
 → (TE’)T’E’ (rule 1)
 → (T)T’E’ (rule 3)
Follow(T)={)} as E’ is nullable.

E → TE’ (rule 1)
 → FT’E’ (rule 4)
 → FT’+TE’ (rule 2)
Follow(T’)={+}

E → TE’ (rule 1)
 → FT’E’ (rule 4)
 → (E)T’E’ (rule 8)
 → (TE’)T’E’ (rule 1)
 → (FT’E’)T’E’ (rule 4)
 → (FT’)T’E’ (rule 3)
Follow(T’)={)} as E’ is nullable.

E → TE’ (rule 1)
 → FT’E’ (rule 4)
 → (E)T’E’ (rule 8)
 → (TE’)T’E’ (rule 1)

 → (FT’E’)T’E’ (rule 4)
 → (F)T’E’ (rule 3 & 6)
 Follow(F)={)} as both E’ and T’ are nullable.

E → TE’ (rule 1)
 → FT’E’ (rule 4)
 → (E)T’E’ (rule 8)
 → (TE’)T’E’ (rule 1)
 → (FT’E’)T’E’ (rule 4)
 → ((E)T’E’)T’E’ (rule 8)
 → ((TE’)T’E’)T’E’ (rule 1)
 → ((FT’E’)T’E’)T’E’ (rule 4)
 → ((FE’)T’E’)T’E’ (rule 6)
 → ((F+TE’)T’E’)T’E’ (rule 2)
Follow(F)={+}.

E → TE’ (rule 1)
 → FT’E’ (rule 4)
 → (E)T’E’ (rule 8)
 → (TE’)T’E’ (rule 1)
 → (FT’E’)T’E’ (rule 4)
 → (F*FT’E’)T’E’ (rule 5)
Follow(F)={*}.

3.4 Extension/study of Expression Grammar for
Precendence and Associativity.

Consider the Expression grammar with +, -, *, / operators.
 E → E+T | E-T | T
 T → T*F | T/F | F
 F → id | num | (E) (3.4.1)
Precendence and Associativity of operators play an important
role during evaluation of expression.

Case of Precedence: Consider the expression 2+3*4. Using the
grammar 3.4.1
2+3*4 = num + num * num
 = F + F * F
 = F + T * F
 = F + T
 = T + T
 = E + T
 = E
So 2+3*4 becomes 2+12=14 same as normal arithmetic.

Now consider the expression grammar as
 E → E*T | T
 T → T+F | F
 F → id | num | (E) (3.4.2)
Consider the expression 2+3*4. Using the grammar 3.4.2
2+3*4 = num + num * num
 = F + F * F
 = T + F * T
 = T * T
 = E * T
 = E

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 1581
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

So 2+3*4 becomes 5*4=20 which is not correct. Hence least
precedence operator must be at the starting point of the
grammar.

Case of Associativity: Consider the expression 3-5-8. Using the
grammar 3.4.1
3-5-8 = num - num - num
 = F - F - F
 = T - T - T
 = E - T - T
 = E - T
 = E
So 3-5-8 evaluates to -2-8=-10 same as normal arithmetic.
Now consider the expression grammar as
E → T+E | T-E | T
 T → T*F | T/F | F
 F → id | num | (E) (3.4.3)
Consider the expression 3-5-8. Using the grammar 3.4.3
3-5-8 = num - num - num
 = F - F - F
 = T - T - T
 = T - T - E
 = T - E
 = E
So 3-5-8 evaluates to 3-(-3)=6 which is not correct. The same
applies to division operator. These points are well explained in
[4]. We have given here for completeness.

4 CONCLUSION
A graphical method has been given to calculate First and
Follow sets of a grammar which is easier to apply for a learner
or a student. The method presented in this paper also gives a
clear picture on understanding meanings of First and Follow
by following the derivation of First and Follow from produc-
tion rules of the grammars. This graphical method is applied
to the Expression Grammar to find the First and Follow sets
and we also check its correctness with the help of derivations.
This paper also describes the role of precedence and associa-
tivity during the evaluation of expressions.

References
[1] Alfred V.Aho, Monica S.Lam, Ravi Sethi, Jeffrey D.Ullman, Compilers:
 Principles, Techniques, and Tools (2nd Edition), New Jersey: Addison
 Wesley, 2007.

[2] Yuqiang Sun. Design of Parallel Algorithm for FIRST and FOLLOW
 Sets. Computer Engineering, 2004: pp.71-73.

[3] Arturo Trujillo, Computing First and Follow functions for feature-
 theoretic grammars, The 15th International Conference on Computa
 tional Linguistics,1994: pp.875-880.

[4] Kenneth C. Louden , Compiler Construction Principles and Practice,
 New Jersey :Addison Wesley, 2007.

Authors Profile:
Dr. A S R Murty was born in Andhra
Pradesh, India. He received his B. Tech. De-
gree in Electrical Engineering from JNT Uni-
versity, Hyderabad in the year of 1976. He
has received his M.Tech. Degree in Electrical
Engineering from IIT, Kanpur in the year of
1978. He has obtained his Ph.D. degree in

Electrical Engineering from IIT, Madras in the year of 1997. He
has worked from scientist V to Joint Director in Central Power
Research Institute, Bengaluru for 21 years and currently work-
ing as Professor in Dept. of CSE, SVCE, Bengaluru. His areas
of interest include scientific and engineering calculations,
Power systems Analysis and simulation, Control systems and
stability studies, Programming Languages as a user.
E Mail: asr_murty2001@yahoo.co.in

Maria Navin J R was born in Karnataka,
India. He received his B. E. Degree in
Information Science & Engineering from
VTU, Belgaum in the year 2004. He received
his ME degree in Computer Science & Engi-
neering from UVCE, Bangalore University,

Bangalore in the year 2011. He is presently pursuing his Ph. D.
under VTU, Belgaum and working as Assistant Professor in
Dept. of CSE, SVCE, Bengaluru. His research interest includes
Mobile Cloud Computing, Cryptography and Theoretical
Foundations of Computer Science.
E Mail: marianavin.jr@gmail.com

 IJSER

http://www.ijser.org/
mailto:asr_murty2001@yahoo.com

	1 Introduction
	2 Calculation of First and Follow
	3 Graphical Representation
	3.1 First and Follow applied to 3 subgrammars
	3.2 Applying the graphical method to Expression Grammar
	3.3 Understanding/correctness of First and Follows for the Expression Grammar.
	3.4 Extension/study of Expression Grammar for Precendence and Associativity.

	4 Conclusion
	References
	Authors Profile:

