Geochemical characteristics of the basin-type granitoids in the Atia and its surrounding areas of Kumasi basin of Ghana.

Tandoh Kingsley Kwaah, Morgan Anthony, Seckley Albert Worlanyo, Brako Blestmond Afrifa

Abstract— Representative rocks of the metasediment suite granitoids (basin-type granitoids) were selected from the Atia area in the Ashanti part of Ghana for geochemical analyses. The rocks contained quartz, plagioclase, microcline, biotite, muscovite, and garnet as the main mineral phase. The CIPW normative mineral shows that the rocks are syenite-granite, monzogranite, granodiorite and quartz-monzonite. The geochemical classification of the basin type granitoids based on the Fe-Number, the modified alkali-lime index and the aluminium saturation index, defined the rocks as mainly magnesium, alkali, alkali-calcic to calc-alkali and peraluminous respectively. The rocks also show calc-alkaline affinity. The alumino-silicate character by the molar ratio Al/(Na+K+Ca/2) show mainly S-type characteristic of the rocks, which is a characteristic of basin type granitoids. The major element composition of the whole rock revealed that the basin-type granitoids are from metapelitic and or metagreywackes, with little or no metabasaltic to metatonalitic, and calc-alkaline to peraluminous source.

Index Terms— Basin-type, Birimian, Geochemical Characteristic, Granitoid, Kumasi Basin, Major Elements Metasediment, S-type

1 **Introduction**

Most part of Ghana falls within the West African Craton. The main rock units underlying the country are the early Proterozoic BirimianSupergroup and Tarkwaian group of the main West African Craton occupying the west and northern parts; the Pan African province covering the Dahomeyan, Togo and Buem formations in the southeast and eastern parts; and Infracambrian/Palaeozoic sedimentary basin situated in the central and eastern parts of the country (Junner 1935; Kesse, 1985).

The Birimian terrain of Ghana is characterized by narrow sedimentary basins and linear volcanic belts (Fig 1.1), and both the basins and the belts are intruded by extensive granitoids of Proterozoic age (Kesse, 1985). The sedimentary basins are composed mainly of dacitic volcaniclastic, wackes and argilites. The metavolcanic rocks consist mainly of tholeiitic basalts (basaltic lava flows, mafic dolerites, gabbros, etc) and minor calc-alkaline rocks (andesites, dacites, rhyolites, pyroclastics). These Birimian rocks are associated with and overlain by the clasticTarkwaian formation, derived from them (Junner, 1940; Kesse, 1985; Leube et al., 1990; Davis et al., 1994).

Intruded into the Birimian rocks are Winneba, Cape Coast, Dixcove and Bongo granitoids (Junner 1935; Kesse, 1985). The latter three have been recently termed “Basin”, “Belt” and “K-rich” granitoids by Luebe et al. (1990). These plutons range from foliated to massive, and concordant to discordant types, which from field relations are mostly syn- to post tectonic in emplacement. The basin and belt type intruded the sedimentary basin and volcanic belt respectively. The Birimian sedimentary basins in Ghana include the Cape Coast, Kumasi, Sunyani and Maluwe Basins (Hirdes et al., 1992). On the basis of U-Pb zircon and monazite dating, Hirdes et al. (1992) determined the age of the Belt-type granitoids in the Ashanti belt to be about 2175 Ma and the age of the Kumasi Basin-type granitoids at about 2116 Ma.

The granitoids display different geochemical characteristics, with the belt-type and the basin-type granitoids showing I-type and S-type characteristics, respectively (Leube et al., 1990). However, recent studies conducted on granitoids from the Konongo area, the north-eastern part of the Ashanti volcanic belt (Dampare et al., 2005) have revealed that some of the belt-type granitoids show S-type characteristics, which might have a different tectonic setting or origin from the others. The basin-type granitoids in the Winneba area of Ghana also show I-type characteristics (Nyarko et al., 2012).

This work seeks to present XRF data on the major elements of the whole rock to examine the current geochemical nature and source of the basin-type granitoids in the Atia and its surrounding areas of Kumasi basin.

2 **Geology of the Study Area**

The rocks in Atia area belong to the Kumasi metasedimentary group which corresponds to the Lower Birimian series of Junner (1940) and Milési et al. (1992). The metasedimentary rocks in the area are intruded basin-type granitoids. The metasedimentary rocks comprises volcanioclastic rocks, turbidite-related wackes, argillitic rocks, and chemical sediments now metamorphosed into meta-greywackes, phyllites, schists, and shales. They are intruded by felsic and mafic dykes. Shear and fault zones are found in all the metasedimentary units but more pronounced in the soft rocks adjacent to the intrusive rocks.
The basin-type granitoids mainly display S-type characteristics (Loh et al., 1999). They are less mafic than the belt-type granitoids and display granodioritic and granitic compositions. The youngest intrusions are sometimes K-rich. Mauer (1990) proposed two formation models: (1) a formation in situ by partial melting of surrounding metasedimentary rocks, or (2) a formation by melting of metamafic rocks with significant contamination by the upper crustal metasediments.

![Regional geological map of part of southern Ghana showing the rock units and the study area](after Leube et al., 1990)

3 MATERIALS AND METHODS

Representative samples of the granitoids were collected. The samples were given sample identities (I.D.) and then placed in sample bags marked with name corresponding to the sample I.D. Fifty-nine oriented rock samples were collected; 25 of these samples were cut to make thin sections and twenty selected for whole rock geochemistry, XRF at Ghana Geological Survey Department. Thin sections of the representative rock samples were prepared for the mineral composition analysis at the Department of Earth Science petrological laboratory, University of Ghana, Legon-Accra.

3.1 Thin sections preparations

Small sections of the rock samples were cut using a diamond saw. The softer rocks were impregnated with Canada balsam to make them hard for cutting. Sequentially, the sections were then grounded flat and smoothed on one surface using Silicon-Carbide powder. The smoothed surfaces were mounted on glass slides using Canada balsam. The other surfaces were then ground down with silicon carbide powder grade 80 until the rocks became very thin. Advancingly, finer abrasives were used as the section became thinner, and finishing was done with 600-grade of silicon carbide powder until the thickness of the rocks was about 30 microns. The thickness was deduced by observing the interference colours of common minerals such as quartz and feldspar under the petrographical microscope. From the hand specimen and modal analyses, appropriate rock names were assigned to the various rocks observed and sampled in the field.

3.2 X-Ray fluorescence

Rock saw with a diamond blade was used to cut the rocks into rectangular blocks which are about 9 centimetres in length, 6.5 centimetres in breath, with a thickness of about 5 centimetres. The samples were crushed into powdered particles by using jaw crusher. The samples were sieved with 125 μm aperture to obtain grain sizes less than 125 μm. Samples were stored in transparent containers that were labelled with appropriate sample I.D. The pellet-making process started with weighing 4.0 g of rock samples added to 0.9 g of cereox wax on the Adventurer Pro AV264 electronic balance. The weighed mixture was transferred into a sample cup, covered which was then fix into a Petsh MM 30 Homogenizer. The homogenizer machine was used to mix the content of the cup to obtain a homogenous powder. Pressing the powder with the aid of a die produced the pellets. The sample cup and die were cleaned with acetone before the process was repeated for the next rock sample in order to avoid contamination.

The rock samples were analysed by XRF for 12 major elements, reported as oxides (SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O, P₂O₅, SO₃, Cl) and 18 minor elements (V, Cr, Co, Ni, Cu, Zn, Ga, Pb, Sr, Y, Zr, Nb, Ba, La, Ce, Pb, Th, and U). The major elements were stated in wt% while the minor elements were in ppm. The XRF spectrometer model, Spectro X-Lab 2000 was used for the tests. Data accuracy was enhanced by taken three measurements for each sample. In order to evaluate the precision of the results, known standards were tested prior to the analysis.

4 RESULTS AND DISCUSSION

4.1 Geochemical Characteristics

The major element composition (in wt oxide) of the representative basin-type granitoids from the Atia Suite and their CIPW normative mineral assemblages are in table 1 and 2. All the analyzed granitoid samples from the Atia and its surrounding area have SiO₂ content of 59.23-72.92%; TiO₂ of 0.02-0.66%; Al₂O₃ of 14.49-23.48%; total iron as Fe₂O₃ of 0.59-6.04%; MnO of 0.02-2.0%; MgO of 0.94-6.93%; CaO of 0.01-4.46%; (Na₂O+K₂O) content of 3.90-9.88% and Na₂O/K₂O ratios from...
0.67 to 24.69 and P2O5 of 0.10-2.30%. The Mg# of the rocks ranges from 28.11 to 79.42. The major element composition does not reveal an evolutionary trend as evidenced in Fig.4.5.2, showing roughly scattered pattern. All the major element composition apparently decreased with increasing SiO2. The Cross-Iddings-Pirsson-Washington (CIPW) norm calculations were performed using ferric-ferrous iron ratio of 0.15 to nullify any effect that might have resulted from post-emplacement oxidation processes. Table 4.3 represent the normative mineral assemblage for the granitoids in the study area. The rocks are quartz normative and contain normative hypersthene in the range of 2.34-17.26 wt. %. Normative albite occurs in all the rocks. Interestingly, K-68 is the only sample which contains normative corundum (0.00%) and all the samples contain normative.

Table 1 Major element abundances in the representative samples from the Atia area granitoid suite.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Na2O</td>
<td>4.37</td>
<td>4.45</td>
<td>4.98</td>
<td>4.55</td>
<td>4.32</td>
<td>4.69</td>
<td>5.05</td>
<td>3.77</td>
<td>4.43</td>
<td>4.65</td>
<td>2.61</td>
<td>3.23</td>
<td>6.45</td>
</tr>
<tr>
<td>MgO</td>
<td>2.34</td>
<td>2.84</td>
<td>1.66</td>
<td>2.57</td>
<td>2.76</td>
<td>1.58</td>
<td>1.15</td>
<td>3.57</td>
<td>1.55</td>
<td>0.91</td>
<td>6.59</td>
<td>3.77</td>
<td>0.94</td>
</tr>
<tr>
<td>SiO2</td>
<td>72.92</td>
<td>72.84</td>
<td>80.28</td>
<td>68.91</td>
<td>51.03</td>
<td>65.1</td>
<td>62.52</td>
<td>59.25</td>
<td>63.38</td>
<td>52.12</td>
<td>61.97</td>
<td>61.59</td>
<td>60.33</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>0.23</td>
<td>0.31</td>
<td>0.22</td>
<td>0.47</td>
<td>0.38</td>
<td>0.36</td>
<td>0.09</td>
<td>0.40</td>
<td>0.26</td>
<td>0.16</td>
<td>0.56</td>
<td>0.17</td>
<td>0.04</td>
</tr>
<tr>
<td>K2O</td>
<td>3.61</td>
<td>3.64</td>
<td>4.67</td>
<td>4.36</td>
<td>4.31</td>
<td>4.21</td>
<td>4.96</td>
<td>5.55</td>
<td>4.10</td>
<td>4.24</td>
<td>3.81</td>
<td>2.70</td>
<td>2.10</td>
</tr>
<tr>
<td>CaO</td>
<td>1.65</td>
<td>2.24</td>
<td>1.35</td>
<td>1.85</td>
<td>1.76</td>
<td>1.56</td>
<td>0.45</td>
<td>1.67</td>
<td>0.99</td>
<td>1.24</td>
<td>4.46</td>
<td>1.11</td>
<td>0.59</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.26</td>
<td>0.46</td>
<td>0.25</td>
<td>0.35</td>
<td>0.26</td>
<td>0.22</td>
<td>0.02</td>
<td>0.46</td>
<td>0.24</td>
<td>0.12</td>
<td>0.66</td>
<td>0.59</td>
<td>0.01</td>
</tr>
<tr>
<td>MnO</td>
<td>0.65</td>
<td>0.70</td>
<td>0.45</td>
<td>0.23</td>
<td>0.04</td>
<td>0.01</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td>0.08</td>
<td>0.04</td>
<td>0.12</td>
<td>0.08</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>2.34</td>
<td>3.01</td>
<td>2.09</td>
<td>2.88</td>
<td>2.80</td>
<td>1.85</td>
<td>0.59</td>
<td>3.39</td>
<td>1.93</td>
<td>1.11</td>
<td>6.04</td>
<td>4.92</td>
<td>6.01</td>
</tr>
<tr>
<td>Total</td>
<td>104.5</td>
<td>101.0</td>
<td>100.2</td>
<td>102.5</td>
<td>99.5</td>
<td>100.1</td>
<td>99.6</td>
<td>99.6</td>
<td>92.5</td>
<td>100.5</td>
<td>90.8</td>
<td>91.4</td>
<td>101.0</td>
</tr>
<tr>
<td>MgO</td>
<td>69.85</td>
<td>67.14</td>
<td>63.80</td>
<td>66.57</td>
<td>66.15</td>
<td>74.42</td>
<td>67.59</td>
<td>61.99</td>
<td>63.42</td>
<td>69.44</td>
<td>60.27</td>
<td>78.11</td>
<td>63.58</td>
</tr>
<tr>
<td>CaO</td>
<td>1.31</td>
<td>1.31</td>
<td>1.07</td>
<td>1.13</td>
<td>1.13</td>
<td>1.30</td>
<td>1.55</td>
<td>1.32</td>
<td>1.31</td>
<td>1.18</td>
<td>0.98</td>
<td>1.87</td>
<td>1.37</td>
</tr>
</tbody>
</table>

Table 2 CIPW normative mineral assemblages in the representative samples from the Atia areas granitoid suite.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>2.15</td>
<td>3.69</td>
<td>1.66</td>
<td>3.18</td>
<td>2.85</td>
<td>4.84</td>
<td>2.94</td>
<td>5.61</td>
<td>5.23</td>
<td>2.97</td>
<td>0.00</td>
<td>1.12</td>
<td>11.31</td>
</tr>
<tr>
<td>Cr</td>
<td>22.32</td>
<td>21.31</td>
<td>27.60</td>
<td>25.77</td>
<td>25.67</td>
<td>20.35</td>
<td>12.71</td>
<td>29.31</td>
<td>12.60</td>
<td>24.23</td>
<td>14.01</td>
<td>13.83</td>
<td>28.43</td>
</tr>
<tr>
<td>Ab</td>
<td>38.67</td>
<td>37.48</td>
<td>41.89</td>
<td>38.10</td>
<td>36.56</td>
<td>41.46</td>
<td>47.81</td>
<td>31.90</td>
<td>36.46</td>
<td>39.37</td>
<td>26.65</td>
<td>22.09</td>
<td>37.33</td>
</tr>
<tr>
<td>An</td>
<td>6.48</td>
<td>7.78</td>
<td>5.56</td>
<td>6.11</td>
<td>6.25</td>
<td>5.05</td>
<td>1.83</td>
<td>5.67</td>
<td>1.26</td>
<td>4.91</td>
<td>18.83</td>
<td>18.47</td>
<td>4.59</td>
</tr>
<tr>
<td>MgO</td>
<td>0.00</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.01</td>
<td>0.02</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
<td>0.13</td>
<td>0.04</td>
<td>0.04</td>
<td>0.01</td>
<td>0.04</td>
<td>0.17</td>
<td>0.13</td>
<td>0.09</td>
</tr>
<tr>
<td>K2O</td>
<td>0.53</td>
<td>0.51</td>
<td>0.52</td>
<td>1.11</td>
<td>0.50</td>
<td>0.62</td>
<td>0.24</td>
<td>0.94</td>
<td>0.82</td>
<td>0.38</td>
<td>1.04</td>
<td>1.33</td>
<td>0.40</td>
</tr>
<tr>
<td>CaO</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Fig.2 Harker diagrams showing variations of major element oxides with silica for the Atia area basin-type granitoids. Symbols same as Figure 4.5.1

4.2 Petrography
The principal phase assemblage of the Basin type granitoids studied composes of Quartz, plagioclase, microcline, biotite, muscovite, and garnet. Accessory minerals are chlorite, and opaque minerals. The rock composition based on the normative modal abundance showed mainly syenogranite-granite and monzo-granite with three samples plotting in granodiorite field, with some in quartz-syenite (fig 3A) and in the normative Ab-
An-Or classification diagram of O’Connor (1965) plotted in the field of granitic and granodioritic (Fig. 3B). Also based on the normative Q'/ANOR (Fig. 3C) classification of rocks, the rock still showed syeno-granite, monzo-granite, granodiorite field, and quartz-syenite.

Fig. 3 (A) Mesonormative QAP diagram (after Le Maitre, 1989) showing granodioritic composition for the rocks in the study. Fields: 1- granodiorite, 2 – monzo-granite, 3 – syeno-granite, 4 - quartz syenite. 5-quartz-monzonite and (B) Ab-An-Or diagram (O’Connor, 1965; Barker, 1979).

Fig. 4 Molar norm compositions in the Q’-ANOR diagram of Streckeisen and Le Maitre (1979).

4.3 Classification
Various schemes, which involve parameters such as presumed origin of granitoids, mineralogy, geochemistry, and tectonic environment, have been proposed for the classification of granitoids. In this study, the rocks under investigation have been classified in selected geochemical schemes aside the mineralogical classification.

Generally, the rocks showed calc-alkaline affinity (Fig. 5) other than tholeiitic in the AFM diagram of Irvine and Barager (1971). Debon and Le Fort (1983) developed several major element-based chemical-mineralogical plots which are useful in providing information about plutonic rocks. On the A-B diagram (Fig. 4.5.6), the rocks demonstrate peraluminous character and also plot in field I, II, III with two samples graded into the IV.

The peraluminous character of the rocks is corroborated by their lack of normative corundum and the position in the A/CNK-A/NK diagram of Maniar and Piccoli (1989), which further indicates that the rocks are of S-type character with slight I-type character (Fig. 4.5.7).

Fig. 5 AFM of Irvine and Barager (1971).
VI: unusual rocks (e.g., carbonatites). Samples mostly plot in the I, II, III with some graded into the IV

Fig.7 Shand’s molar parameters A/NK = Al2O3/(Na2O+K2O) vs. A/CNK = Al2O3/(CaO+Na2O+K2O) of the granitoids (fields after Maniar and Piccoli, 1989). Dashed line represents boundary between I- and S-type granites (Chappell and White, 1992).

When the data are plotted in the K2O versus SiO2 diagram (Le Maitre, 1989) (Fig.8), the rocks mainly indicate a high-K, some medium-K with two grading into low-K affinities.

Fig.8 K2O versus SiO2 diagram (Le Maitre, 1989)

Frost et al. (2001) proposed a classification scheme based on major elements and using factors defined as the iron number or Fe*, modified alkali-lime index (MALI), and aluminum saturation index (ASI). The iron number [FeO/(FeO+MgO)] or Fe* [FeOtot/(FeOtot+MgO)] classifies samples as either ferroan or magnesian. The iron number or Fe* provides information about the differentiation history of a granitic magma. The MALI is defined by (Na2O+K2O-CaO) and divides samples into alkali, alkali-calcic, calcic-alkaline and calcic affinities. MALI is used to interpret magma source. ASI is also defined by molecular Al/(Ca-1.67P+Na+K) and it differentiated peraluminous, metaluminous and peraluminous suites. Peraluminous suites have ASI>1.0, metaluminous suites have ASI<1.0 and (Na+K) < Al, and peralkaline suites have ASI<1.0 and (Na+K) > Al. The ASI index is a reflection of micas and accessory minerals in the rock, and is related to magma source and conditions of melting. On the classification scheme of Frost et al. (2001), the analysed basin type granitoid in the Atia areas is Magnesian, and mainly peraluminous. The MALI of the studied granitoids slightly increases with increasing SiO2 (wt. %) as showed in Figures 4.5.11 and 4.5.12. Their high total alkalis (Na2O + K2O = 0.33–8.91 wt. %) content compared to -lime concentration (CaO = 0.46–4.46 wt. %) classifies the granitoids into the high-alkalic, alkali-calcic and calc-alkalic series fields.

Fig.9 The MALI – SiO2 diagram indicating a crossing trend of alkali, alkali-calcic to calc-alkalic characteristics of the rock
Fig. 10 Chemical classification of the basin granitoids in the Atia suite based on the iron number or Fe*, modified alkali-lime index (MALI), and aluminum saturation index (ASI). (a) Fe*-SiO2 diagram showing a magnesian affinity.

4.4 Source rock characteristics and petrogenesis

Magmatic source of igneous rocks can be inferred using immobile to mobile ratios, which are commonly referred to as Pearce element ratio (after Pearce, 1996). Rocks from the same magmatic source have similar Pearce element ratios and plot along linear trends of magmatic differentiation. In granites, Ti, P, and Si are considered to be immobile elements, whereas K, Na, and Ca are mobile elements (Rollinson, 1993).

The Ti/K and Si/K cationic ratios computed for the rocks do not show similar values, ranging from 0.005 to 0.272 and 8.35 to 184.05, respectively. On the Ti/K and Si/K cationic plot (Fig. 4.5.13), the rocks do not define a continuous trend, deviating from the trend of differentiation. The differences in their values including their calc-alkaline, peraluminous to slightly metaluminous and magnesian affinity suggest that the rocks were probably generated by different processes and sources. This is supported by their curvilinear trend in the Al2O3/TiO2 vs. TiO2 plot (Fig. 4.5.14).

Fig. 11 The Si/K verses Ti/K element ratio plot for the Atia areas’ granitoids, depicting a nearly continuous trend characteristic of rocks developed from a common source.

Fig. 12 Al2O3/TiO2 verses TiO2 diagram for the Etia areas’ granitoids showing a curvilinear trend characteristic of plutonic rocks developed through magmatic differentiation.

The nature of the igneous rocks can be constrained using the geochemical and isotopic signatures of the plutonic rocks. Partial melting experiments conducted at geologically realistic temperatures and pressures have indicated that granitoid magmas can be generated from a wide range of common crustal rocks (e.g., Wolf and Wyllie, 1994; Gardien et al., 1995). The geochemistry and mineralogy of the resulting granitic rocks are indicative of the nature of the source from which they were derived, as well as, the dynamic conditions under which magmas were formed. (Roberts and Sundvoll, 2000) Compositional differences in melts generated by partial melting of different source rocks, such as amphibolites, tonaliticgneisises, metapelites and metagreywackes, under variable melting conditions can be visualized in terms of molar CaO/(MgO+FeOtot) vs. molar Al2O3/(MgO+FeOtot) of the major element composition of the whole rock (Altherr et al., 2000; Fig. 4.5.15). Fig. 4.5.15 indicates that the basin type granite in the Atia and its surrounding areas in the Kumasi basin was derived from partial melting of metagreywackes and metapelites with somewhat contribution from metabalsaltic to metatonalitic source. Experimental and geochemical studies suggest that the major source of peraluminous and S-type granitods could be the partial melting of detrital metasediments, especially shales and greywackes (Condie et al., 1999; Frost et al., 2001). However, their peraluminous character could also result from large-scale contamination of the ascending granitoid magma by first-cycle assimilated intermediates to acid Volcaniclastic basin sediments. (Leube et al 1990). Also the plot of some samples into the I-type domain might be cause by the geochemical primitiveness of the early Proterozoic Birimian Sediments.
5.0 CONCLUSION AND RECOMMENDATION

5.1 Conclusion
The basin-type granitoids in the study area are predominantly peraluminous, calc-alkaline, magnesian, and S-type. They are medium to high K-rich. The granitoids were largely derived from partial melting from metapelitic and metagreywackes, with little or no contribution from partial melting of metabasaltic and or metatonalitic source. The basin-type granitoid in the Atia area has different geochemical characteristics from the Winneba basin-type and belt-type granitoids. The dominant source for material for this granitoid is the Birimian metasedimentary rocks and magnesian. This is in contrast to both the Winneba- and belt-type granitoids.

5.2 Recommendation
More geochemical data, including trace element and isotopic data are required to confirm the petrogenic and tectonic setting deductions made from the major elements of the plutonic rocks.

ACKNOWLEDGMENT
The authors wish to express their profound gratitude to Prof. Prosper M. Nude and Mr. Richard K. Afenu of Earth Science Department, University of Ghana for their excellent guidance and support.

REFERENCES

- **Tandoh Kingsley Kwaaah** holds a Master of Philosophy degree in Geology from University of Ghana, Legon, currently working at the Oil & Gas Engineering Department, All Nations University College, Koforidua, Ghana. Email: ktandoh@anuc.edu.gh

- **Morgan Anthony** is currently studying Master of Science degree in Petroleum Engineering at Aberdeen University, United Kingdom. Email: morgt@gmail.com

- **Seckley Albert Worlanyo** is currently studying Master of Science degree in Reservoir Engineering at Aberdeen University, United Kingdom. Email: wallasalberto@yahoo.com

- **Brako Blestmond Afrifa** holds a Master of Philosophy degree in Geology from University of Ghana, Legon. Email: bblestmond@gmail.com