
International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014                                                             1991 
ISSN 2229-5518 

IJSER © 2014 
http://www.ijser.org 

Genetic Algorithm and its application to Big Data Analysis  
 

Munawar Hasan 
 

Abstract – In this paper, I have described Genetic Algorithm for combinatorial data leading to establishment of mathematical modeling for Information 
Theory. The paper describes GA (Genetic Algorithm) in light of information theory and then derives Mathematical Framework covering but not limited to 
Big Data. This framework is a boon to any domain that has to harness data explosion like neurobiology, statistical inference, quantum computation, 
entropy management, encoding information theory (cryptography) etc. The efficiency calculated here describes incremental probabilistic approach to 
reach a solution which is highly stable, evolutionary and self adjusting henceforth invents a extremely new approach for computational analytics. 
 
Index Terms – Genetic Algorithm, Big Data, Evolution, Combinatorial Computation, RB Tree, Sigmoid, Convergence 
 
 

1. INTRODUCTION  
 

They are the class of algorithm which can leverage evolution 
based heuristic techniques to solve a problem. During past 20 
years, there has been great research and development over the 
adaptive nature of the Genetic Algorithms (GA). They are 
represented by chromosome like data structure which uses 
recursive recombination or search techniques. Let u be a set of 
sample points, u = {u1,u2,u3,….,un}. Then from a genetic 
algorithm we can obtain optimal set of recombination and 
selection on basis of some semantic analytics. So from above 
sample points we could get a set {u1,u2,….,ui} in one set having 
similar properties and {uj,uk,……un} as another set. 
In broader sense, GA is formulated on five basic principles: 

1) Initialization:  
The set containing the whole sample points (the entire 
population) marks the initialization of the GA. Sample 
points or population may consist of the database tables 
or direct input of real life scenarios. The later principles 
changes accordingly. In case of database tables, the 
semantic analytics are type casted into statistical 
theorem using random number generators creating 
density functions. In case of real time data, the whole 
process shapes as natural language parsing, then 
statistics is deployed. 

2) Selection :  
The idea of Selection pivots around the Darwin’s theory 
of survival of the fittest. A subset is created of the set 
obtained from previous step. This subset is just a way 
to categorize data. They may contain data that seems 
to be logically related at a particular instant of time or 
otherwise. They may contain multiple sets, each having 
specific domain data like, data relating to customer 
shopping trends, data relating to customer grievances 
etc.  

3) Cross over/ recombination 
The principle of cross over is the line of demarcation of 
the general theory of GA.  The gene, an individual 
member of a particular set, is crossed over with a gene 
of another set. This cross over results in exchange of 
behavior and trends over different sets creating logical 
relation between  set and reducing degree of 
randomness among sets. At any instant cross over is 
done only between two respective genes, leaving all 
other unaltered. 
 
 

4) Mutation: 
The prior idea of mutation is to generate genetic 
diversity. In cross over, the properties and trends of 
other genes are taken which may result in suppression 

of one’s own properties (alleles), thus mutation is 
important way to maintain individuality. Mutation may 
also result in generation of important alleles via 
combination of different genes.  

5) Acceptance: 
After having done with mutation we generate new 
offspring, i.e. candidate for next level of iteration. But 
not all candidates are healthy to be taken to next step. 
This is where the elimination occurs. During this 
elimination round we calculate the percentage of 
acceptable features for a single gene. We put a cut off 
mark, similar to the activation mark in neural network. 
Those genes that cross that cut off mark are the next 
level population. This whole process continues till 
change between two successive level genes is 
negligibly small. 

2. Why and Where GA? 
 

The GA is applied over the problem domain where the outcome 
is very unpredictable and the process of outcome contains 
complex inter related modules. Also GA is very apt for such class 
of problem where problem specification is very difficult to 
formulate. During the last few decades, computer science has 
seen huge advancements in demands and its implementation. 
As per now heavy cross demands are in fire and hence 
implementation and analytics is becoming more and more chaos. 
The situation is very apt for applying genetics and getting optimal 
results. There is also class of problem which is related to idea of 
super polynomial explosion or combinatorial explosion. In this 
kind of problem we are interested in suitable solution as per 
scenario rather than actual solution. GA is also becoming very 
popular in such type of problematic domains. In health care 
domain, there are excessively increase in demand for different 
kind of pharmaceuticals relating to different disease. For 
example in AIDS, the human immunodeficiency virus becomes 
resistant to antibiotic after a definite span of time. From there on 
the patient is feed with completely new kind of antibiotic. This 
new antibiotic is prepared by analyzing the pattern of the human 
immunodeficiency virus and its resilient nature. As the time 
passes by, finding the required pattern becomes very complex 
and hence inaccuracy emerges. The GA with its evolutionary 
based theory is a boon in this field. The genes defined by the 
algo, generates an evolution based antibiotic for the required 
patient. One such remarkable mention is the IBM’s EuResist 
genomics project in Africa, where they have deployed their 
powerful genomics architecture with the neural networks for the 
HIV treatment. 
Any Genetic Algorithm includes following steps: 

1) Generation of random variable to random expectation 
for populate chromosomes. 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014                                                             1992 
ISSN 2229-5518 

IJSER © 2014 
http://www.ijser.org 

2) Compute fitness function  f(x) | ˅ (x) | x€ chromosome 
3) Generate New Population: 

a) Selection : Choose the parent chromosome 
b) Crossover : Create offspring 
c) Mutation : Generate and check the probability 

keeping each bit of chromosome as locus 
d) Acceptance : Acquire the new generation 

4) Replacement : Choose the new offspring 
5) Goto Step 1.  

 

2.1 The Chromosome: 
 

The whole process of GA is based on idea of natural evolution 
and selection. This knowledge of evolution and selection in 
encoded in chromosome and can be analyzed with conditional or 
random probability. As evolution passes by, there are some 
features that become obsolete with time. Henceforth, the idea is 
to only capture those features which are useful. In layman’s term 
chromosome is the basic unit in running a GA, right from 
problem formulation to solution presentation. The place where 
chromosome recedes in a set becomes a disputed topic in field 
of GA.  I have tried to stay away from this dispute when I show 
GA in some applications by using the random variable 
generators. This makes the position of chromosome irrelevant. 
 

2.2 Representation of the Chromosome: 

The representation of any GA chromosome is dependent on 
problem its is formulated on. There are basically two broad 
categories to represent a chromosome. When the problem 
contains distinguishable components like the Travelling 
Salesman Problem (TSP), then binary representation may be 
done. In such representation, each gene is represented by 0 or 
1. The alleles (group of genes) so formed becomes the set of 
binary values. In such cases, the different GA steps like cross 
over etc are performed using the binary operators. The other 
form of representation is used when problem has not got 
decisive components to begin with. Example of such problem is 
the data mining, health care etc. Here rather than sticking to 
elementary notion of binaries, the random probability with 
complex statistical and applied mathematical concept is used. 
The representation makes it clear that GA may contain complex 
computing components and with these components comes their 
time space trade off (the complexity analysis). We will discuss 
this later in this paper under combinatorial explosion. 
 
 

2.3 The Idea of Random Population:  
 

In applied mathematics, the random variable denotes the 
expectancy of an event in a sample space. Here sample space 
means the problem definition and the expectancy is the variation 
in its (a sample point in sample space) occurrences due to some 
reason (in GA reasons results from semantics). The general 
theory of probability made random variables untouched, it was 
applied mathematics or advance probability where there arouse 
need to create random number and hence population. In now 
days, these random numbers are very common in cryptography 
in generating public and private key (TGS [Ticket Granting 
System]) and in implementing Kerberos. The probability theory, 
defines the random probability as the mathematics of non-
deterministic science (or theory of chaos).  

 

3. Paradox of Exponential  Degradation or 
Combinatorial  Explosion: 

 
They refer to the class of problems where the solution set runs in 
exponential time. They are primarily known as solution sets that 
run in super polynomial time. The term super polynomial means 
that the complexity of the algorithm is defined by O(2n), where n 
is the number of inputs, in our case the sample space. Such 
problems contains huge set of false solution, hence finding and 
sorting such false solution itself falls into another big solution. 
The errors in analysis in any one even part deteriorate the 
solution convergence, a term referred as degradation in 
computational science. Let take a hypothetical example from 
health care. Let there be 20 rules to create an antidote. Now due 
to constantly using this antidote, there harmful bacteria have 
become resistant to basic formula. So, some 20 additional rules 
are generated to counter such bacteria. Now each individual 20 
rules must be matched with additional 20 rules, there by resulting 
total combination of magnitude 2020 i.e. 
104857600000000000000000000. Now let us try to solve this 
with sun ultra sparc processor having simultaneous 20 processor 
running at any instant of time. Let all 2020 be run independently 
(which is not practically feasible as different patterns are 
dependent on each other). It will take about 15 days to solve this 
kind of combination. This analysis shows how we actually 
deviate from results in big solution problems. The concept of 
amortized analysis is introduced to tackle such problems. There 
are plenty of approaches developed with time and experience 
that saves us from exponential degradation. IBM uses great 
amount of amortized analysis in its EuResist project. 

Below I have shown the GA application in big data analysis 
and in optimization of problem. I have developed the 
methodology to implement them and their approach is entirely 
new in nature and distinct from all available in market, making 
the whole suite completely new of its kind. 

 
 

4. Big Data Analysis using the Genetic 
Algorithm: 

 
The field of Information Theory refers big data as datasets 
whose rate of increase is exponentially high and in small span of 
time; it becomes very painful to analyze them using typical data 
mining tools. Such data sets results from daily capture of stock 
exchange, any credit card user’s timely usage trends, insurance 
cross line capture, health care services etc. In real time these 
data sets go on increasing and with passage of time create 
complex scenarios. Thus the typical data mining tools needs to 
be empowered by computationally efficient and adaptive 
technique to increase degree of efficiency by using adaptive 
techniques.  
Using GA over data mining creates great robust, computationally 
efficient and adaptive systems. In past there have been several 
researches on data mining using statistical techniques. The 
statistics that have heavily contributed are the ANOVA, 
ANCOVA, Poisson’s Distribution, and Random Indicator 
Variables etc. The biggest drawback of any statistical tactics lies 
in its tuning. With exponential explosion of data, this tuning goes 
on taking more time and inversely affects the through put. Also 
due to their static nature, often complex hidden patterns are left 
out. The idea here is to use genes to mine out data with great 
efficiency. Also I will show how this mined data can be effectively 
used for different purposes.  
Rather than sticking to general notion of probabilities, I have 
here used the concept of Expectations, and have modified the 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014                                                             1993 
ISSN 2229-5518 

IJSER © 2014 
http://www.ijser.org 

theory of Expectations to achieve the desired results. Any data 
categorizes of three main components, the constants, the 
variables and the variants. The constant comprises of data that 
practically remains unaltered in a given span of time. The 
variables are changing with time while in case of variants; it is 
not clear whether they will behave as constant or variables. So, 
taking this as the first step, we have three set each containing 
respective data as stated. Now we will calculate the expectancy 
of each datum inside the data set.  
 
 

4.1 Calculation of Expectancy: 
 

The expected value of any random variable is consistent when 
the summation is finite and convergent. The idea of convergence 
of random variable here used is of tensor (a point in sample 
space which has a definite magnitude and direction but whose 
direction is dependent on other point’s directions in the sample 
space). So from this tensor definition, it is clear that there is a 
degree of interrelation between the random variables, which has 
a tendency to align degree of randomness towards a particular 
direction. This tendency of alignment is very apt and exposable 
using GA. 

 
 

 
 

The graph above shows the plot of all the points in sample 
space. From the sample space, such points are picked up which 
creates a tensor. The green points shows the plot of a pattern 
which leads in some direction. When we are iterating in 
beginning we are not sure that the direction shown here is 
leading to a solution. But as we go on towards inner steps, at 
each step our possibility increases of reaching a solution in 
direction of plot.  From the graph, a notion comes that we may 
have used some other points. This is where the tensor comes 
into play. The tensor described here is of recursive nature. Every 
next point is decided by the position of previous point 
maintaining continuity. Hence at any instant of there would be 
exactly one and one solution for plot. 

This set with the expected value marks the beginning of the 
GA. Each individual value inside each set represents a stateless 
chromosome. The word stateless is used because of the random 
origin of chromosome. Each chromosome is a potential 
candidate for the next level. Thus each set contains a set of 
population. Henceforth, we have created our first condition 
towards the GA. Now we go ahead and create condition for 
crossover. I have done the genetic crossover using the concept 
of RB-Tree. This is very unique concept and hasn’t been much 
explored until now. RB-Tree is heavily used in algorithm design 
to make heavy optimization and create efficient bucket for data 
storage. In fact the Linux kernel is also getting into heavy usage 

of RB-Tree in subsequent releases. Below is the pseudo code 
for constructing a RB-Tree, I have customized the algo to meet 
our needs of GA. 
 
 
 
  

 
RB-INSERT(T,z)  

  y<-nil[T] 
  x<-root[T] 

  while x != nil[T] 
    do  y<-x 

        if key[z]<key[x] 
          then x<-left[x] 
          else x<-right[x] 

  p[z]<-y 
  if y=nil[T] 

    then root[T]<-z 
    else if key[z]<key[y] 
        then left[y]<-z 
        else right[y]<-z 

  left[z]<-nil[T] 
  right[z]<-nil[T] 
  color[z]<-RED 

  RB-INSERT-FIXUP(T,z) 
   

RB-INSERT-FIXUP(T,z) 
  while color[p[z]]=RED 

     do if p[z]=left[p[p[z]]] 
       then y<-right[p[p[z]]] 
             if color[y]=RED 

               then color[p[z]]<-BLACK 
                    color[y]<-BLACK 

                    color[p[p[z]]]<-RED 
                    z<-p[p[z]] 

      else if z=right[p[z]] 
                    then z<-p[z] 

                         LEFT-ROTATE(T,z) 
            else color[p[z]]<-BLACK 

              color[p[p[z]]]<-RED 
              RIGHT-ROTATE(T,p[p[z]]) 

           else y<-left[p[p[z]]] 
             if color[y]=RED 

             then color[p[z]]<-BLACK 
                  color[y]<-BLACK 

                  color[p[p[z]]]<-RED 
                  z<-p[p[z]] 

           else if z=left[p[z]] 
                  then z<-p[z] 

            RIGHT-ROTATE(T,z) 
           else color[p[z]]<-BLACK 
                color[p[p[z]]]<-RED 

                LEFT-ROTATE(T,p[p[z]]) 
  color[root[T]]<-BLACK 

 
           

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014                                                             1994 
ISSN 2229-5518 

IJSER © 2014 
http://www.ijser.org 

 
After constructing the required tree, copy all the nodes just 
before the leaf to leaf creating duplicate values of leaf and its 
predecessor. This customization will provide stability to solution. 
The rotate functions proved respective shift to one place right or 
left. 
 
By running above algo, we will have following kind of RB-Tree: 
 

 
 
 
Now we will proceed towards the second step of the GA, i.e. the 
cross over. For cross over I have used an ambitious approach of 
tree cross over.  As per now we have three RB-Trees, now by 
cross over we will get hidden relationship between the disjoint 
sets. I have realized there is a definite way of crossing of tree. 
Here I define a parameter µ, called the scaling parameter. The 
black nodes when crossed over with the red nodes, or red nodes 
crossed over with black nodes, the final value of cross over must 
be multiplied by 10µ. In other words, black-red or red-black cross 
over is one tenth of black-black cross over. The red-red cross 
over must be multiplied by 25 to 30 times the black-black cross 
over. This is actually weighted GA concept to create uniform 
probability for all data. 
For the cross over function, we define inverse sigmoid as the 
criteria, given by: 
 

 
 
The function f(x) is hyperbolic in nature. We are only interested 
in modulus of this evaluation i.e. the positive part. The point to be 
noted, we will never omit the negative part at any instant. The 
evaluation process will go till end as usual, the final result will the 
mod of final value.  The graph below shows the plot. 
 

 
 
 

From the graph, it is clear that, the values are mirror images 
across the x axis.  Now we proceed to the next step, the 
mutation. Mutation is very important phase in data centric 
applications. From mutation, the data mining gets robust and 
data so created becomes logically connected, but not 
knowledgeable. Here I have used two consecutive mutation 
scenarios. During the first mutation deep connected pattern is 
established, while the second one narrows down the logical 
connection and sorts out the healthiest connections. 

1) GA Mapper 1:  (sin𝑥 ∗  cos𝑥) 

The traditional sine cosine association, create a finite 
correlation between the inputs. The correlation is very 
deep and hence as summation is done for inner values, 
very small floating point data is also included, hence we 
must use at least one function that creates an 
intersection of the sine and cosine and hence narrow 
down the search results and henceforth pick up only 
healthy associations. 

2) GA Mapper 2:  ∑ (−1)𝑛𝑥(2𝑛+1)

(2𝑛)!�𝑝
𝑛=0   +  𝑥𝑙𝑛𝑥  +  

𝑐𝑒𝑖𝑙(𝑠𝑖𝑛𝑥) 
 
The first term of the equation is the well know Taylor’s 
series, the second is the logarithmic series and the last 
is the ceil function. The Taylor’s series creates a subset 
that makes finer correlation. The logarithmic series and 
the ceiling function restrict the data subsets, thereby 
making only useful data count. Graphically: 
 
Mapper 1: 
Shows how the sine and the cosine graphs cut the 
sigmoid graphs. As we stated before we are only 
interested in positive graphs.  
Inference:  
Data sets which are correlated by sine, cosine and the 
sigmoid graph. Theoretically, this data contains all 
possible combinations that have any inter dependence 
between them. If we do a permutation of among all data 
sets, the result will be a super set of this mapper.   

               
 
 

Mapper 2: 
Shows the narrowing down of sample space. The space 
is now reduced to a small region visible between graph 
color orange, green and blue.  
Inference: 
All logically related data sets are achieved here. Those 
that were feebly related or casually related are sorted 
out. Also sorted out are those which were potential 
dangers against knowledge acquisition. The property of 
knowledge acquisition describes a set of data that are 
defined by many to many onto function, meaning each 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014                                                             1995 
ISSN 2229-5518 

IJSER © 2014 
http://www.ijser.org 

data has a relation to every other data and position of 
any data is dependent of every other data. 
 

 
 

Now, moving towards the steps ahead, we calculate the delta, 
the degree of permissible error. This PE [permissible error] 
shows our deviation from the actual result and hence decides the 
contestants for the next iteration. This process comes under the 
acceptance of the GA. If any datum goes well inside the PE, then 
it becomes the successful candidate for the actual population.  
For establishing the validation of equation, we will use the 
concept of loop invariant, commonly used inside loops. Well we 
are here constantly going through a cycle of different phases of 
GA, hence loop invariant concept is quite applicable here. 
 

4.2 Validation of Equation: 
 
Initialization: 

We must start by showing a base of validation just 
before applying GA. This initialization is done using the 
population gathering. Each of three sets, as described 
before, contains elements that fall into their domain of 
application. Let the first set contains elements 
{x1,x2,……,xxn}. In worst case complexity each of this n 
elements qualify for final population, hence the final 
outcome is the super set of this set. This shows that 
loop invariant concept holds just before the iteration of 
GA starts.  

Maintenance: 
To validate on the concept of loop invariant, we must 
show its consistency between ith and (i+1)th step. At the 
ith step, then result is obtained via (i-1)th step. Let this be 
α, now for ith  step: 

 
 

After applying the sigmoid, we a probability density 
function (pdf) wrt all members of other respective set. 
Now we go on applying the respective mapper function 
one by one. 
 

 

 
 
We repeat the above process for both (i-1) and (i+1). Let ωi-1,I 
numerical difference between the (i-1)th and ith step. The negative 
should be neglected as we are concerned only with magnitude. 
Hence 

 
 

Now, plot the obtained values on previously obtained 
values .i.e. from 1 to (i-2)th step. The plot must be 
continuous in nature, as all the function we are using is 
continuous and covergible henceforth the continuous 
nature of association of function alone is sufficient to 
generate validity. 

Termination: 
The termination is established at the last iteration. Let 
this last iteration be nth, here also we plot the ωn-2,n-1  
and ωn-1,n values and check continuity. In this way we 
create the validation of the equation. 
 

Thus, in the way shown above we can analyze big data and 
create a great degree of accuracy. 
 
 
5. References:  
 

• Rich and Knight, Introduction to Artificial Intelligence 
• Thomas H Coreman, Charles E Leiserson, Ronald L 

Rivest, Clifford Stein, Introduction to Algorithms 
 

• Kristian Guillaumier, Generic Chromosome 
Representation and Evaluation for Genetic Algorithms 

• Fozia Hanif Khan, Nasiruddin Khan, Syed Inayatullah, 
Shaik Tajuddin Nizami, Solving TSP Problem By Using 
Genetic Algorithm 

• William H Hsu, Genetic Algorithms 
• SM Gabber, Nour ElDinn, Genetic Algorithm and 

Random Number Generators 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014                                                             1996 
ISSN 2229-5518 

IJSER © 2014 
http://www.ijser.org 

• Brain Farrell, John Konya, Meeting the Big Data 
Challenge 

• Jiayu Zhou, Youfang Lin, Xi Wang, Visualization of 
Large Scale Weighted Clustered Graph: A Genetic 
Approach 

• Behrouz Mineai, William Punch, Using Genetic 
Algorithm for Data Mining Optimization 

• Vitoantonio Bevilacqua, Giuseppe Mastronardi, Filippo 
Menolascina, Angelo Paradiso and Stefania  Tommasi, 
Genetic Algorithms and Artificial Neural Networks in 
Microarray Data Analysis: A Distributed Approach 

• Paul O Lewis, A Genetic Approach for Sequence Data 
• Sufal Das, Benani Saha, Data Quality Mining using 

Genetic Algorithm 
• Shital S Shah, Andrew Kusiak, Data Mining with 

Genetic based Selection 
• Li Lin, Longbin Cao, Application of Genetic Algorithm in 

Stock Market Data 
• Randy L Haupt, Practical Genetic Algorithm 
• Matlab-Reference, http://www.mathworks.com/help/ 
• Terry J Woodfield, Predictive Modeling in Insurance 

Industry 
• Magnus Lei Hetland, Mastering Basic Algorithms in 

Python 
• Flechter, C Gardner, Guide to Financial Modeling using 

Python 
 
Ref (1) Thomas H Coreman, Charles E Leiserson, 
Ronald L Rivest, Clifford Stein, Introduction to 
Algorithms 

 
 

6 Biography: 

Munawar Hasan:  
 
He is an Algorithm Developer at Computer Sciences Corporation 
(CSC) for last 2.7 years. Most recently he developed a Predictive 
Algorithm for Financial Modeling to detect several types of Fraud 
in Banking and Insurance. He has been active contributor to 
CSC Innovation Lab and provided numerous design techniques 
for financial data. He also has a year experience working in 
Cloud Computing and came up with his own Computing 
framework for Cloud to facilitate true virtualization. He has 
written several white papers on topics related to computational 
analysis and cloud simulation 
He was born and brought up in Bodh Gaya and Graduated from 
Dehradun. He currently lives in New Delhi    

IJSER

http://www.ijser.org/
http://www.mathworks.com/help/



