Fuzzy Completely Weakly e-irresolute Functions

A. Vadivel and M. Palanisamy

Abstract—In this paper, we introduce a new class of functions called fuzzy completely e-irresolute functions between fuzzy topological spaces and also in this paper, fuzzy e'-open sets and fuzzy e'-closed sets are used to define and investigate a new class of functions called fuzzy completely weakly e-irresolute. Relationships between the new class and other classes of functions are established.

Key words and phrases: Fuzzy topology, fuzzy e'-open sets, fuzzy e'-irresolute functions, fuzzy e'-open set, fuzzy completely e'-irresolute, Fuzzy e'-continuous, fuzzy e'-connected.

1 INTRODUCTION

Ever since the introduction of fuzzy sets by Zadeh [20], the fuzzy concepts has invaded almost all branches of Mathematics. The concept of fuzzy topological space has introduced by Chang [5] in 1968. Since then many fuzzy topologists have extended various notions in classical topology to fuzzy topological spaces. In this paper, fuzzy e'-open sets and fuzzy e'-closed sets are used to define and investigate a new class of functions called fuzzy completely weakly e'-irresolute. Relationships between the new class and other classes of functions are established. Throughout this paper X and Y are always fuzzy topological spaces. The class of all fuzzy sets on a universe X will be denoted by X. Let A be a fuzzy subset of a space X. The fuzzy closure of A, fuzzy interior of A, fuzzy δ-closure of A and the fuzzy δ-interior of A are denoted by $Cl(A)$, $Int(A)$, $Cl_\delta(A)$ and $Int_\delta(A)$ respectively.

A fuzzy subset A of space X is called fuzzy regular open [1](resp. fuzzy regular closed) if $A = Int(Cl(A))$ (resp. $A = Cl(Int(A))$. The fuzzy δ-interior of fuzzy subset A of X is the union of all fuzzy regular open sets contained in A. A fuzzy subset A is called fuzzy δ-open [12] if $A = Int_\delta(A)$.

The complement of fuzzy δ-open set is called fuzzy δ-closed (i.e., $A = Cl_\delta(A)$).

2 PRELIMINARIES

Now, we introduce some basic notions and results that are used in the sequel.

Definition 2.1. A fuzzy topology on a nonempty set X is a family δ of fuzzy subsets of X which satisfies the following three conditions:

(i) $0, 1 \in \delta$,

(ii) If $g, h \in \delta$, their $g \wedge h \in \delta$,

(iii) $\bigvee_{i \in I} f_i \in \delta$.

The pair (X, τ) is called a fuzzy topological space [5].

Definition 2.2. Members of δ are called fuzzy open sets [5] and complements of fuzzy open sets are called fuzzy closed sets [5], where the complement of a fuzzy set A, denoted by A^C, is $1 - A$.

Definition 2.3. [15] The fuzzy subset x_a of a non-empty set X, which $x \in X$ and $0 < a \leq 1$ defined by

$$x_a(p) = \begin{cases} a & \text{if} \quad p = x \\ 0 & \text{if} \quad p \neq x \end{cases}$$

is called a fuzzy point in X with support x and value a. The fuzzy point x_a is called point.

Definition 2.4. [15] Let λ be fuzzy set in X and x_a a fuzzy point in X. we say that $X_a \leq \lambda$.

• A. Vadivel, Mathematics Section (FEAT), Annamalai University, Annamalainagar, Tamil Nadu-608 002. E-mail: annmaths@gamil.com

• M. Palanisamy, Department of Mathematics, Annamalai University, Annamalainagar-608002. E-mail: palaniva26@gmail.com
Definition 2.5. [9] A fuzzy set \(\lambda \) of a fuzzy topological space \(X \) is said to be fuzzy \(\gamma \)-open if \(\lambda \leq \text{Cl} \)
\((\text{Int} \lambda) \vee \text{Int}(\text{Cl}(\lambda))\) where \(\text{Cl}(\lambda) = \{\mu : \mu \geq \lambda, \mu \}
\) is fuzzy closed in \(X \} \) and \(\text{Int}(\lambda) = \{\mu : \mu \leq \lambda, \mu \}
\) is fuzzy open in \(X \} \). If \(\lambda \) is fuzzy \(\gamma \)-open, then \(1 - \lambda \) is fuzzy \(\gamma \)-closed.

Definition 2.6. [3] Let \(f : X \rightarrow Y \) be a mapping. Then \(f \) is called a fuzzy \(\gamma \)-irresolute mapping if \(f^{-1}(V) \) is a fuzzy \(\gamma \)-open set in \(X \) for each fuzzy \(\gamma \)-open set in \(Y \).

Definition 2.7. [17] A fuzzy set \(\lambda \) of a fuzzy topological space \(X \) is said to be fuzzy \(e \)-open (resp. regular open [1]) if \(\lambda \leq \text{Cl}(\text{Int}_\lambda \lambda) \vee \text{Int}(\text{Cl}(\lambda)) \) (resp. \(\lambda = \text{Int}(\text{Cl}(\lambda)) \)) where \(\text{Cl}(\lambda) = \{\mu : \mu \geq \lambda, \mu \}
\) is fuzzy closed in \(X \} \) and \(\text{Int}(\lambda) = \{\mu : \mu \leq \lambda, \mu \}
\) is fuzzy open in \(X \} \). If \(\lambda \) is fuzzy \(e \)-open, then \(1 - \lambda \) is fuzzy \(e \)-closed.

Definition 2.8. [17] Let \(X \) be a fuzzy topological space and \(\lambda \) be any fuzzy set in \(X \). The fuzzy \(e \)-closure of \(\lambda \) in \(X \) is denoted by \(e\text{Cl}(\lambda) \) as follows:
\[e\text{Cl}(\mu) = \{\lambda : \lambda \geq \mu, \lambda \text{ is a fuzzy } e \text{-closed set of } X \} \]. Similarly we can define \(e\text{Int}(\lambda) \).

Remark 2.9. For a fuzzy set \(\lambda \) of \(X \), \(1 - e\text{Int}(\lambda) = e\text{Cl} \)
\((1 - \lambda) \).

Remark 2.10. A fuzzy set \(\lambda \) is fuzzy \(e \)-closed if and only if \(e\text{Cl}(\lambda) = \lambda \).

Definition 2.11. [15] A fuzzy set \(A \) in \(X \) is said to be \(q \)-coincident with a fuzzy set \(B \), denoted by \(AqB \), if there exists \(x \in X \) such that \(A(x) + B(x) > 1 \). It is known that \(A \leq B \) if and only if \(A \) and \(1 - B \) are not \(q \)-coincident, denote \(A \rightarrow q (1 - B) \).

Definition 2.12. [15] A fuzzy set \(B \) is a quasi neighbourhood \((q \text{-neighbourhood, for short}) \) of \(A \) if and only if there exists a fuzzy open set \(U \) such that \(AqU \leq B \).

Definition 2.13. A fuzzy set \(A \) in \(X \) is said to be a \(e-q \) neighbourhood \((e-q\text{-nbd, for short}) \) of \(x_a \) if and only if there exists a fuzzy \(e \)-open set \(V \) in \(X \) such that \(x_a q V \leq A \).

Theorem 2.14. [15] In a fuzzy topological space \(X \), \(\lambda \) be a fuzzy \(e \)-closed (resp. fuzzy \(e \)-open) if and only if \(\lambda = e\text{Cl}(\lambda) \) (resp. \(\lambda = e\text{Int}(\lambda) \)).

Definition 2.15. [3] Let \(X \) and \(Y \) be two fuzzy topological spaces. Let \(\lambda \in I^X, \mu \in I^Y \). Then \(f(\lambda) \) is a fuzzy subset of \(Y \), defined by \(f(\lambda) : Y \rightarrow [0,1] \)
\[f(\lambda)(y) = \sup_{x \in f^{-1}(\{y\})} \lambda(x) \quad \text{if} \quad f^{-1}(\{y\}) \neq \phi \]
\[0 \quad \text{if} \quad f^{-1}(\{y\}) = \phi \]
and \(f^{-1}(\mu) \) is a fuzzy subset of \(X \), defined by \(f^{-1}(\mu)(x) = \mu(f(x)) \).

Lemma 2.16. [1] Let \(f : X \rightarrow Y \) be a function and \(\{\lambda_\alpha\} \) be a family of fuzzy sets of \(Y \), then
\(f^{-1}(\bigcup \lambda_\alpha) = \bigcup f^{-1}(\lambda_\alpha) \),
\(f^{-1}(\bigcap \lambda_\alpha) = \bigcap f^{-1}(\lambda_\alpha) \).

Lemma 2.17. [1] For functions \(f_1 : X_1 \rightarrow Y_1 \), and fuzzy sets \(\lambda_i \) of \(Y_i \), \(i = 1, 2 \); we have \((f_1 \times f_2)^{-1}(\lambda_1 \times \lambda_2) = f_1^{-1}(\lambda_1) \times f_2^{-1}(\lambda_2) \).

Lemma 2.18. [1] Let \(g : X \times Y \rightarrow X \times Y \) be the graph of a function \(f : X \rightarrow Y \). Then, if \(\lambda \) is a fuzzy set of \(X \) and \(\mu \) is a fuzzy set of \(Y \) \(g^{-1}(\lambda \times \mu) = \lambda \wedge f^{-1}(\mu) \).

Definition 2.19. A function \(f : X \rightarrow Y \) is said to be:
1. fuzzy completely continuous [4] if \(f^{-1}(V) \) is fuzzy regular open in \(X \) for each fuzzy open set \(V \) in \(Y \);
2. fuzzy \(e \)-irresolute [16] if \(f^{-1}(V) \) is fuzzy \(e \)-open in \(X \) for each fuzzy \(e \)-open set \(V \) in \(Y \);
3. fuzzy \(e \)-continuous [17] if \(f^{-1}(V) \) is fuzzy \(e \)-open in \(X \) for each fuzzy open set \(V \) in \(Y \);
4. fuzzy totally continuous [11] if \(f^{-1}(V) \) is fuzzy clopen in \(X \) for each fuzzy subset \(V \) in \(Y \);
5. fuzzy open [19] if \(f(V) \) is fuzzy open set in \(Y \) for each fuzzy open set \(V \) in \(X \);
6. fuzzy almost open [13] if \(f(V) \) is fuzzy regular open set in \(Y \) for each fuzzy regular open set \(V \) in \(X \);
7. fuzzy strongly continuous [2] if \(f^{-1}(V) \) is fuzzy open fuzzy...
closed set in X for every fuzzy set λ in Y.

Definition 2.20. A function $f : X \rightarrow Y$ is called fuzzy e-open [16] (resp. fuzzy pre- e-open) if the image of each fuzzy open (resp. fuzzy e-open) set in X is fuzzy e-open in Y.

Definition 2.21. [2] A function $f : X \rightarrow Y$ is called fuzzy completely continuous if $f^{-1}(V)$ is fuzzy regular open in X for every fuzzy open set V of Y.

Definition 2.22. [16] A function $f : X \rightarrow Y$ is called fuzzy e-irresolute (resp. Fuzzy e-continuous) if $f^{-1}(V)$ is fuzzy e-open in X for every fuzzy e-open (resp. fuzzy open) set V of Y.

Definition 2.23. A space (X, τ) is called fuzzy nearly compact [10] (resp. fuzzy e-compact) if every fuzzy regular open (resp. fuzzy e-open) cover of X has a finite subcover.

Definition 2.24. [18] A space X is called fuzzy almost normal if for each fuzzy closed set A and each fuzzy regular closed set B such that $A \cap B = \emptyset$, there exists disjoint fuzzy open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

3 Fuzzy Completely e-Irresolute Function

Definition 3.1. Let (X, τ) and (Y, σ) be a fuzzy topological spaces. A function $f : (X, \tau) \rightarrow (Y, \sigma)$, is said to be a fuzzy completely e-irresolute function if $f^{-1}(V)$ is fuzzy regular open in X for every fuzzy e-open set λ in Y.

Remark 3.2. Every fuzzy strongly continuous function is fuzzy e-irresolute, but the converse is not true.

Example 3.3 Let $X = Y = \{a, b, c\}$. Define fuzzy sets $\mu_1, \mu_2 : X \rightarrow [0,1]$ such that $\tau = \{0,1\}$ and

$$\sigma = \{0,1, \mu_1, \mu_2\} \quad \text{where} \quad \mu_1 = \frac{0.3}{a} + \frac{0.4}{b} + \frac{0.5}{c}, \quad \mu_2 = \frac{0.7}{a} + \frac{0.5}{b} + \frac{0.5}{c}$$

Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by $f(a) = 1$, $f(b) = 2$, $f(c) = 3$. Then f is fuzzy e-irresolute but not fuzzy strongly continuous.

Remark 3.4. Every completely e-irresolute function is fuzzy e-irresolute. But the converse is not true.

Example 3.5 Let $X = Y = \{a, b, c\}$. Define fuzzy sets $\mu_1, \mu_2 : X \rightarrow [0,1]$ such that $\tau = \{0,1, \mu_1, \mu_2\}$ and

$$\sigma = \{0,1, \mu_1, \mu_2\} \quad \text{where} \quad \mu_1 = \frac{0.3}{a} + \frac{0.4}{b} + \frac{0.5}{c}, \quad \mu_2 = \frac{0.7}{a} + \frac{0.5}{b} + \frac{0.5}{c}$$

Define $f : (X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is fuzzy e-irresolute but not fuzzy completely e-irresolute.

Remark 3.6. Every e-irresolute function is fuzzy e-irresolute. But the converse is not true.

Example 3.7. Let $X = Y = \{a, b, c\}$. Define fuzzy sets $\mu_1, \mu_2, \mu_3, \mu_4 : X \rightarrow [0,1]$ such that $\tau = \{0,1, \mu_1, \mu_2, \mu_3, \mu_4\}$ and $\sigma = \{0,1, \mu_1, \mu_2\}$ where

$$\mu_1 = \frac{0.3}{a} + \frac{0.4}{b} + \frac{0.5}{c}, \quad \mu_2 = \frac{0.7}{a} + \frac{0.5}{b} + \frac{0.5}{c}$$

Define $f : (X, \lambda) \rightarrow (Y, \sigma)$ be the identity function. Then f is fuzzy e-irresolute but not fuzzy completely e-irresolute.

Theorem 3.8. If $f : (X, \tau) \rightarrow (Y, \sigma)$ is a fuzzy completely e-irresolute function A is any fuzzy open subset of X, then the restriction $f |_A : A \rightarrow Y$ is fuzzy completely e-irresolute.

Proof. Let λ be a fuzzy e-open subset of Y. By hypothesis, $f^{-1}(\lambda)$ is fuzzy regular open in X. Since A is fuzzy open in X, then $(f |_A)^{-1}(\lambda) \cap A$ is fuzzy regular open in A. Therefore, $f |_A$ is fuzzy completely e-irresolute.

Theorem 3.9. The following hold for functions $f : X \rightarrow Y$ and $g : Y \rightarrow Z$.

1. If $f : X \rightarrow Y$ is fuzzy completely e-irresolute and $g : Y \rightarrow Z$ is fuzzy e-irresolute, then $g \circ f : X \rightarrow Z$ is fuzzy completely e-irresolute.
2. If function $f : X \rightarrow Y$ is fuzzy completely continuous and is fuzzy completely e-irresolute, then $g \circ f : X \rightarrow Z$ is fuzzy completely e-irresolute.
fuzzy completely e-irresolute.

3. If $f : X \to Y$ is fuzzy completely e-irresolute and $g : Y \to Z$ is fuzzy e-continuous, then $g \circ f : X \to Z$ is fuzzy completely continuous.

Proof. Obvious.

Definition 3.10. A space X is said to be fuzzy e-connected, if X cannot be expressed as the union of two nonempty fuzzy e-open sets.

Theorem 3.11. If a mapping $f : X \to Y$ is fuzzy completely e-irresolute surjection and X is fuzzy almost connected then Y is fuzzy e-connected.

Proof. Assume that X is fuzzy connected and Y is not fuzzy e-connected. Then Y can be written as $Y = U \cup V$ such that U and V are disjoint nonempty fuzzy e-open sets. Since f is fuzzy completely e-irresolute, $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint fuzzy regular open sets and $X = f^{-1}(U) \cup f^{-1}(V)$. This shows that X is not fuzzy connected. This is a contradiction.

Definition 3.12. A space X is called fuzzy almost regular [6] (resp. fuzzy strongly e-regular) if for every fuzzy regular closed (resp. fuzzy e-closed) set $F \subseteq X$ and any point $x \in X - F$, there exists disjoint fuzzy open (resp. fuzzy e-open) sets U and V such that $x \in U$ and $F \subseteq V$.

Definition 3.13. A function $f : X \to Y$ is called fuzzy pre-e-closed if the image of every fuzzy e-closed subset of X is fuzzy e-closed set in Y.

Theorem 3.14. If a mapping $f : X \to Y$ is fuzzy pre-e-closed, then for each subset B of Y and a fuzzy e-open set U of X containing $f^{-1}(B)$ there exists a fuzzy e-open set V containing B such that $f^{-1}(V) \subseteq U$.

Proof. Obvious.

Theorem 3.15. If f is fuzzy completely e-irresolute e-open from an almost regular space X onto a space Y, then Y is fuzzy strongly f-regular.

Proof. Let f be fuzzy e-closed set in Y with $y \notin F$ such that $y = f(x)$. Since f is fuzzy completely e-irresolute function, $f^{-1}(F)$ is fuzzy regular closed and so fuzzy closed set in X and hence $x \notin f^{-1}(F)$. By almost regularity of X there exists disjoint fuzzy open sets U and V such that $x \in U$ and $f^{-1}(F) \subseteq V$. We obtain that $y = f(x) \in f(U)$ and $F \subseteq f(V)$ such that $f(U)$ and $f(V)$ are disjoint fuzzy e-open sets. Thus Y is fuzzy strongly e-regular.

Definition 3.16. A space X is called fuzzy strongly e-normal if for every pair of disjoint fuzzy e-closed subsets F_1 and F_2 of X there exists disjoint fuzzy e-open sets U and V such that $F_1 \subseteq U$ and $F_2 \subseteq V$.

Theorem 3.17. If f is fuzzy completely e-irresolute injective function from an fuzzy almost normal spaces X onto a space Y then Y is fuzzy strongly e-normal.

Proof. Let F_1 and F_2 be disjoint fuzzy e-closed sets in Y. Since f is fuzzy completely e-irresolute function $f^{-1}(F_1)$ and $f^{-1}(F_2)$ are disjoint fuzzy regular closed and so fuzzy closed set in X. By fuzzy almost normality of X, there exists disjoint fuzzy open sets U and V such that $f^{-1}(F_1) \subseteq U$ and $f^{-1}(F_2) \subseteq V$. We obtain that $F_1 \subseteq U$ and $F_2 \subseteq V$. Thus Y is fuzzy strongly e-open.

Definition 3.18. A fuzzy topological space (X, τ) is said to be fuzzy e-T_1 (resp. fuzzy r-T_1) if for each pair of distinct points x and y of X, there exists fuzzy e-open (resp. fuzzy regular open) sets U_1 and U_2 such that $x \in U_1$ and $y \in U_2$, $x \notin U_2$ and $y \notin U_1$.

Theorem 3.19. If $f : (X, \tau) \to (Y, \sigma)$ is fuzzy completely e-irresolute injective function and Y is fuzzy e-T_1 then X is fuzzy r-T_1.

Proof. Suppose that Y is fuzzy e-T_1. For any two distinct points x and y of X, there exists fuzzy e-open sets F_1 and F_2 in Y such that $f(x) \in F_1$, $f(y) \in F_2$, $f(x) \notin F_2$ and $f(y) \notin F_1$. Since f injective fuzzy completely e-irresolute function, we have X is fuzzy r-T_1.

Definition 3.20. A fuzzy topological space (X, τ) is said to be fuzzy e-T_1 (resp. fuzzy r-T_1) if for each pair of distinct points x and y of X, there exists disjoint fuzzy e-open (resp. fuzzy regular open) sets A and B such that $x \in A$ and $y \in B$.
Theorem 3.21. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is fuzzy completely e-irresolute injective function and \(Y \) is fuzzy e-\(T_2 \) then \(X \) is fuzzy r-\(T_2 \).

Proof. Suppose that \(Y \) is fuzzy e - T_2. For any two distinct points \(x \) and \(y \) of \(X \), there exists fuzzy e-open sets \(F_1 \) and \(F_2 \) in \(Y \) such that \(f(x) \in F_1, f(y) \in F_2, f(x) \notin F_2 \) and \(f(y) \notin F_1 \). Since \(f \) injective fuzzy completely e-irresolute function, we have \(X \) is fuzzy r-T_1.

4 Fuzzy Completely Weakly e-IRRESOLUTE Function

Definition 4.1. A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is fuzzy completely weakly e-irresolute if and only if the inverse image of each fuzzy e-open set \(V \) in \(Y \) is fuzzy open set in \(X \).

It is evident that every fuzzy completely e-irresolute function is fuzzy completely weakly e-irresolute function and every completely weakly e-irresolute function is fuzzy e-irresolute.

However, none of the above implications are not true as shown in the following example.

Example 4.2 Let \(I = [0,1] \) and \(\mu_1 \) and \(\mu_2 \) be fuzzy subsets of \(I \) defined as:

\[
\mu_1(x) = \begin{cases}
\frac{1}{5} (6x + 1) & \text{if } 0 \leq x \leq \frac{1}{4} \\
\frac{1}{3} (2x + 1) & \text{if } \frac{1}{4} \leq x \leq 1
\end{cases}
\]

\[
\mu_2(x) = \begin{cases}
\frac{1}{10} (4x + 1) & \text{if } 0 \leq x \leq \frac{1}{4} \\
\frac{4}{3} (1-x) & \text{if } \frac{1}{4} \leq x \leq 1
\end{cases}
\]

Clearly \(\tau_1 = \{0,1\} \) and \(\tau_2 = \{0,1, \mu_1, \mu_2, \mu_1 \lor \mu_2, \mu_1 \land \mu_2 \} \) are topologies on \(I \). Let \(f : (I, \tau_1) \rightarrow (I, \tau_2) \) be defined by \(f(x) = x \) for each \(x \in I \). Then \(f \) is fuzzy e-irresolute but not fuzzy completely weakly e-irresolute.

Let \(g : (I, \tau_2) \rightarrow (I, \tau_3) \) be defined by \(g(x) = x \) for each \(x \in I \). Then \(g^{-1} = (I), g^{-1}(\mu_1) = (\mu_1) \) which is fuzzy open but not regular open in \((I, \tau_3) \). Therefore, \(g \) is fuzzy completely weakly e-irresolute but not fuzzy completely e-irresolute.

Theorem 4.3. For a function \(f : (X, \tau) \rightarrow (Y, \sigma) \), the following statements are equivalent:

(i) \(f \) is fuzzy completely weakly e-irresolute;
(ii) for each fuzzy point \(x_0 \) in \(X \) and each fuzzy e-open \(e-q \)-nbd \(V \) of \(f(x_0) \), there exists a fuzzy open \(q \)-nbd \(U \) of \(x_0 \) such that \(f(U) \subseteq V \);
(iii) \(f(Cl(A)) \subseteq eCl(f(A)) \), for each fuzzy set \(A \) in \(X \);
(iv) \(Cl(f^{-1}(B)) \subseteq f^{-1}(eCl(B)) \), for each fuzzy set \(B \) in \(Y \);
(v) for each fuzzy e-closed set \(V \) in \(Y \), \(f^{-1}(V) \) is fuzzy closed set in \(X \);
(vi) \(f^{-1}(e-Int(B)) \subseteq Int(f^{-1}(B)) \), for each fuzzy set \(B \) in \(Y \).

Proof. (i) \(\Rightarrow \) (ii). Let \(V \) be any fuzzy e-open \(e-q \)-nbd of \(f(x_0) \) in \(Y \). Then \(V(f(x)) + \alpha > 1 \). We choose a positive real number \(\delta > 1 - \alpha \). Then \(V(f(x)) \) is a fuzzy e-open set, \(f(x_0) \in V \). By hypothesis, there exists an open set \(U \), \(x_0 \in U \) such that \(f(U) \subseteq V \), \(U(X) > \delta > 1 - \alpha \). Therefore, \(U \) is a fuzzy open \(q \)-nbd of \(x_0 \).

(ii) \(\Rightarrow \) (iii). Let \(x_0 \in Cl(A) \) then \(UqA \) and \(f(U)f(A) \) implies \(Vqf(A) \), \(f(x_0) \in eCl(f(A)) \) and \(x_0 f^{-1}(eCl) \).

(iii) \(\Rightarrow \) (iv). Clear.

(iv) \(\Rightarrow \) (ii). Let \(x_0 \) be a fuzzy point in \(X \) and \(V \) be a fuzzy e-open \(e-q \)-nbd of \(f(x_0) \) and let \(f(x_0) \notin eCl(1-V) \), otherwise since \(V \) is a fuzzy e-open \(e-q \)-nbd of \(f(x_0) \), we have \(Vq(1-V) \) which is a contradiction. Thus, \(x_0 \notin f^{-1}(eCl(1-V)) \).

Then there exists a fuzzy open set \(U \) of \(x_0 \) such that \(U \subseteq f^{-1}(1-V) \) which implies that \(f(U) \subseteq V \).

(iv) \(\Rightarrow \) (v). Let \(F \) be any e-closed set in \(Y \). By (iv), we have \(Cl(f^{-1}(F)) \subseteq f^{-1}(eCl(F)) = f^{-1}(F) \) and \(f^{-1}(F) \) is fuzzy closed in \(X \).

(iv) \(\Rightarrow \) (vi). Clear.

(i) \(\Rightarrow \) (vi). For any fuzzy set \(V \) in \(Y \), \(e-Int(V) \) is fuzzy e-open set in \(Y \) and so \(f^{-1}(eInt(V)) \) is fuzzy open set in \(X \).
Hence \(f^{-1}(\text{Int}(V)) = \text{Int}(f^{-1}(\text{Int}(V))) \leq \text{Int}(f^{-1}(V)) \).

\((vi) \Rightarrow (i) \). Obvious.

Theorem 4.4. Let \(X \) and \(Y \) be fuzzy topological space such that \(X \) is product related to \(Y \). Then the product \(U \times V \) of a fuzzy \(e \)-open set \(U \) in \(X \) and fuzzy \(e \)-open set \(V \) in \(Y \) is a fuzzy \(e \)-open set in the fuzzy product space.

Proof. Similar to the proof of Theorem 3.10 in [1].

Theorem 4.5. If \(f_i : X_i \rightarrow Y_i \) (\(i = 1, 2 \)) are fuzzy completely weakly \(e \)-irresolute functions and \(Y_i \) is product related to \(Y_2 \), then \(f_i : X_1 \times X_2 \rightarrow Y_1 \times Y_2 \) is fuzzy completely weakly \(e \)-irresolute.

Proof. Consider \(A = \vee(U_i \times V_i) \) where \(U_i \)'s and \(V_i \)'s are fuzzy \(e \)-open sets of \(Y_i \) and \(Y_2 \), respectively. Since \(Y_i \) is product related to \(Y_2 \), then from Theorem 4.2., \(A \) is fuzzy \(e \)-open set of \(Y_1 \times Y_2 \). By Lemma 2.1. and 2.2., \(f^{-1}(A) = \vee(f_1^{-1}(U_i) \times f_2^{-1}(V_i)) \). Since \(f_1 \) and \(f_2 \) are completely weakly \(e \)-irresolute, \(f^{-1}(A) \) is a fuzzy open in \(X_1 \times X_2 \).

Theorem 4.6. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be a function and \(X \) is product related to \(Y \). If the graph \(g : X \rightarrow X \times Y \) of \(f \) is fuzzy completely weakly \(e \)-irresolute, then so is \(f \).

Proof. Let \(V \) be a fuzzy \(e \)-open set in \(Y \). By Lemma 2.3., we have \(f^{-1}(V) = 1 \wedge f^{-1}(V) = g^{-1}(1 \times V) \). Since \(g \) is fuzzy completely weakly \(e \)-irresolute and \(1 \times V \) is fuzzy \(e \)-open set in \(X \times Y \), \(f^{-1}(V) \) is fuzzy open set in \(X \) and so, \(f \) is fuzzy completely weakly \(e \)-irresolute.

Next, the composition and preservation of fuzzy topological structure under the fuzzy completely weakly \(e \)-irresolute which other fuzzy functions are studied.

The proof of the following theorem is obvious and hence omitted.

Theorem 4.7. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) and \(g : (Y, \sigma) \rightarrow (Z, \eta) \) be two functions.

1. If is fuzzy completely weakly \(e \)-irresolute and \(g \) fuzzy completely \(e \)-irresolute, then \(g \circ f \) is fuzzy completely \(e \)-irresolute.
2. If \(f \) is fuzzy completely weakly \(e \)-irresolute and \(g \) is fuzzy \(e \)-irresolute, then \(g \circ f \) is fuzzy completely weakly \(g \circ f \)-irresolute.
3. If \(f \) is fuzzy completely continuous and \(g \) is fuzzy completely weakly \(e \)-irresolute, then \(g \circ f \) is fuzzy completely \(e \)-irresolute.
4. If \(f \) is fuzzy completely \(e \)-irresolute and \(g \) is fuzzy completely weakly \(e \)-irresolute, then \(g \circ f \) is fuzzy completely \(e \)-irresolute.
5. If \(f \) is fuzzy totally continuous and \(g \) is fuzzy completely weakly \(e \)-irresolute, then \(g \circ f \) is fuzzy completely \(e \)-irresolute.
6. If \(f \) is fuzzy completely weakly \(e \)-irresolute and \(g \) is fuzzy \(e \)-continuous, then \(g \circ f \) is fuzzy continuous.
7. If \(f \) is fuzzy \(e \)-continuous and \(g \) is fuzzy completely weakly \(e \)-irresolute, then \(g \circ f \) is fuzzy \(e \)-irresolute.
8. If \(f \) is fuzzy continuous and \(g \) is fuzzy completely weakly \(e \)-irresolute, then \(g \circ f \) is fuzzy completely weakly \(e \)-irresolute.

Proof. Obvious.

Theorem 4.8. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) is fuzzy almost open surjective function and \(g : (Y, \sigma) \rightarrow (Z, \eta) \) is function such that \(g \circ f : (X, \tau) \rightarrow (Z, \eta) \) is fuzzy completely \(e \)-irresolute, then \(g \) is fuzzy completely weakly \(e \)-irresolute.

Proof. Let \(V \) be a fuzzy \(e \)-open set in \(Z \). Since \(g \circ f \) is fuzzy completely \(e \)-irresolute, \((g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V)) \) is fuzzy regular open in \(X \). Since \(f \) is fuzzy almost open surjective, \(f(f^{-1}(g^{-1}(V))) = g^{-1}(V) \) is fuzzy open in \(Y \). Therefore, \(g \) is fuzzy completely weakly \(e \)-irresolute.

Theorem 4.9. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) is fuzzy open surjective function and \(g : (Y, \sigma) \rightarrow (Z, \eta) \) is function such that \(g \circ f : (X, \tau) \rightarrow (Z, \eta) \) is fuzzy completely weakly \(e \)-irresolute, then \(g \) is fuzzy completely weakly \(e \)-irresolute.

Proof. Similar to the proof of Theorem 4.6.

Theorem 4.10. Let \(P_i \) be the projection function from \(\prod X_i \) onto \(X_i \). If \(f : X \rightarrow \prod X_i \) is fuzzy completely weakly \(e \)-irresolute function, then \(P_i \circ f \) is also fuzzy completely weakly \(e \)-irresolute.

Proof. Obvious.

Definition 4.11. A collection \(\mu \) of fuzzy sets in a fuzzy space \(X \) is said to be cover [8] of a fuzzy set \(\eta \) of \(X \) if and only if
A fuzzy cover \(\eta \) of a fuzzy set \(\eta \) in a fuzzy space \(X \) is said to have a finite subcover if and only if there exists a finite subcollection
\[
\rho = \{A_1, A_2, ..., A_n\} \text{ of } \mu \text{ such that } \left(\bigvee_{A \in \rho} A \right)(x) \geq \eta(x),
\]
for every \(x \in s(\eta) \), where \(s(\eta) \) denotes the support of a fuzzy set \(\eta \).

Definition 4.12. A fuzzy topological space \(X \) is called:
1. fuzzy compact [7] if every fuzzy open cover \(\lambda \) of \(X \) has a finite subcover.
2. fuzzy \(e \)-compact [16] if every fuzzy \(e \)-open cover \(\lambda \) of \(X \) has a finite subcover.
3. fuzzy \(e \)-closed [16] if every fuzzy \(e \)-open cover \(\lambda \) of \(X \) has a finite subfamily \(V \) of \(\lambda \) such that \(\left(\bigvee_{u \in V} e\text{Cl}(u) \right)(x) = 1 \) for each \(x \in X \).

Theorem 4.13. Let \(f : (X, \tau) \to (Y, \sigma) \) be a fuzzy completely \(e \)-irresolute surjective function and \(X \) is fuzzy compact space, then \(Y \) is fuzzy \(e \)-compact.

Proof. Let \(\{V_x : x \in X\} \) be any fuzzy \(e \)-open cover of \(Y \). Then \(\{f^{-1}(V_x) : x \in X\} \) is a fuzzy open cover of \(X \). Since \(X \) is fuzzy compact there exists a finite subfamily \(f^{-1}(V_i) : i = 1, 2, ..., n \) of \(\{f^{-1}(V_x) : x \in X\} \) which covers \(X \). Hence, \(Y \) is fuzzy \(e \)-compact.

Corollary 4.14. Let \(f : (X, \tau) \to (Y, \sigma) \) be a fuzzy completely \(e \)-irresolute surjective function and \(X \) is fuzzy compact space, then \(Y \) is fuzzy \(e \)-closed.

Definition 4.15. Two non-zero fuzzy sets \(A \) and \(B \) in \(X \) are said to be separated [13] (resp. fuzzy \(e \)-separated) if
\[
\overline{A}q \text{Cl}(B) \text{ and } \overline{B}q \text{Cl}(A) \text{ (resp. } \overline{A}q e\text{Cl}(B) \text{ and } \overline{B}q e\text{Cl}(A)).
\]

Definition 4.16. A fuzzy topological space \(X \) is said to be fuzzy connected [14] (resp. fuzzy \(e \)-connected) if it cannot be expressed as the union of two fuzzy separated (resp. fuzzy \(e \)-separated) sets.

Lemma 4.17. Two non-zero fuzzy sets \(A \) and \(B \) are fuzzy \(e \)-separated if and only if there exist two fuzzy \(e \)-open sets \(U \) and \(V \) such that \(A \subseteq U, B \subseteq V, AqV \) and \(BqU \).

Theorem 4.18. Let \(f : (X, \tau) \to (Y, \sigma) \) be a fuzzy completely weakly \(e \)-irresolute surjective function. If \(U \) is a fuzzy connected subset in \(X \), then \(f(U) \) is fuzzy \(e \)-connected in \(Y \).

Proof. Suppose that \(f(U) \) is not \(e \)-connected in \(Y \). Then there exist fuzzy \(e \)-separated subsets \(G \) and \(H \) in \(Y \), such that \(f(U) = G \lor H \). By Lemma 4.1, there exist fuzzy \(e \)-open subsets \(V \) and \(W \) such that \(G \subseteq V, H \subseteq W, GqV \) and \(HqW \). Since \(f \) is fuzzy completely weakly \(e \)-irresolute, \(f^{-1}(G) \) and \(f^{-1}(H) \) are fuzzy open in \(X \) and \(U = f^{-1}(f(U)) = f^{-1}(G \lor H) = f^{-1}(G) \lor f^{-1}(H) \). It is clear that \(f^{-1}(G) \) and \(f^{-1}(H) \) are fuzzy separated in \(X \). Therefore, \(U \) is not fuzzy connected in \(X \).

Corollary 4.19. Let \(f : (X, \tau) \to (Y, \sigma) \) be a fuzzy completely weakly \(e \)-irresolute surjective function. If \(U \) is a fuzzy connected subset in \(X \), then \(f(U) \) is also fuzzy \(e \)-connected.

Theorem 4.20. A function \(f : X \to Y \) is fuzzy completely weakly \(e \)-irresolute if the graph function \(g : X \to X \times X \), defined by \(g(x) = (x, g(x)) \) for each \(x \in X \) is fuzzy completely weakly \(e \)-irresolute.

Proof. Let \(V \) be any fuzzy \(e \)-open set of \(Y \). Then \(1 \times V \) is a fuzzy \(e \)-open set of \(X \times Y \). Since \(g \) is fuzzy completely \(e \)-irresolute, \(f^{-1}(V) = g^{-1}(1 \times V) \) is fuzzy regular open in \(X \). Thus \(f \) is fuzzy completely weakly \(e \)-irresolute.

Theorem 4.21. If \(f : (X, \tau) \to (Y, \sigma) \) is fuzzy completely weakly \(e \)-irresolute function and \(Y \) is fuzzy \(e \)-connected, then \(X \) is fuzzy Hausdorff.

Proof. Let \(x, y \) be any two distinct points of \(X \). Since \(f \) is injective, we have \(f(x) \neq f(y) \). Since \(Y \) is fuzzy \(e \)-connected, there exists \(V \) and \(W \) are \(e \)-open sets in \(Y \) such that \(V \equiv W = 0 \). Since \(f \) is fuzzy completely weakly \(e \)-irresolute, there exists fuzzy open sets \(G \) and \(H \) in \(X \) such that \(f(G) \equiv V \) and \(f(H) \equiv W \). Hence we obtain \(G \equiv H = 0 \). This shows that \(X \) is fuzzy Hausdorff.

Theorem 4.22. If a function \(f : X \to Y \) is a fuzzy completely weakly \(e \)-irresolute surjection and \(X \) is fuzzy connected, then \(Y \) is fuzzy \(e \)-connected.

Proof. Suppose that \(Y \) is not fuzzy \(e \)-connected. There exists non empty fuzzy \(e \)-open sets \(V \) and \(W \) of \(Y \) such that \(Y = V \lor W \). Since \(f \) is fuzzy completely weakly \(e \)-irresolute
\[f^{-1}(V) \text{ and } f^{-1}(W) \] are fuzzy open sets and \[X = f^{-1}(V) \lor f^{-1}(W). \] This shows that \(X \) is not fuzzy connected. This is a contradiction.

CONCLUSION

We have defined and proved basic properties of Fuzzy Completely \(e \)-Irresolute Functions and Fuzzy Completely Weakly \(e \)-Irresolute Function. Many results have been established to show how far topological structures are preserved by these \(e \)-Irresolute Functions. We also have provided examples where such properties fail to be preserved.

REFERENCES

9. I.M. Hanafy, Fuzzy \(\gamma \) -open sets and fuzzy \(\gamma \) -continuity, *J. Fuzzy Math.*, 7 (2) (1999), 419-430.