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Abstract— In this paper the mechanical behavior of woven materials is investigated in order to study and predict their dynamic 
draping. This model can simulate fabric deformation, taking into account its physical and mechanical properties. Once the 
model is tested and validated, an artificial neural network designed to train fabric drape is coupled with the finite element model 
to predict the drape behavior of various fabrics. The designed artificial neural network predicts physical and mechanical 
properties of the fabric from its technical parameters (design parameters). The predicted properties are used as inputs for finite 
element model that simulates and calculates parameters related to the fabric drape. The process is repeated until the difference 
between the actual drape and the simulated one becomes smaller than a limit value. 

Index Terms— Artificial Neural Network, fabric drape, Finite Element Method, prediction and optimization 

——————————      —————————— 

1 INTRODUCTION                                                                     

OR the past three decades, textile fabrics have not only 
the traditional role of clothing or home furnishings, but 
they become more and more genuine support for artistic 
creation and technological innovation  [1]. Therefore, to 
satisfy the consumers has become a task increasingly dif-
ficult to achieve. As a result, the adoption of new meth-
odology for the design and manufacture of clothing has 
become a key requirement [2]. As for example, Tokumaru 
et al. [3] proposed a system named “Virtual Stylist”, 
which aims to help users find out their favorite clothes, 
which might fit them well. The system is composed of 3 
parts as follows, (i) searching clothes in consideration of 
their color scheme harmonies and image sensations, (ii) 
adopting rules for evaluating color scheme image sensa-
tions to a specific user’s feeling of color images, (iii) virtu-
al fitting system. Guerlain and Durand [4] analysed sev-
eral methods developed, evaluated and used as part of a 
3D electronic tailor especially adapted to the clothing in-
dustry. Hu, et al. [5] proposed an immune-inspired 
interactive co-evolutionary CAD system. They gave the 
functionality model, modular architecture and data flow 
of the system. They also proposed the flow of co-design in 
the system. As a case demonstration, the authors studied 
a design sample of a leisure shirt. The experimental 
studies show that this approach has promising 

performance and appealing effects. 
Moreover, given the constant development of comput-

er‘s tools and e-commerce, it became advantageous to 
develop virtual platforms for interactive design of clothes, 
real-time visualization and virtual Try-On [6]. 
Lau et al. [9] used fuzzy expert system with gradient 
descent optimization for prediction of fabric specimens in 
fashion product development. Unlike traditional methods 
which used fabric mechanical properties to predict fabric 
specimens, this fuzzy method accepts fabric hand 
descriptors which are more closely related to the sensory 
judgments made by individuals during fabric selection. 
The prediction accuracy is over eighty percent.  
Hadjianfar and Semnani [10] studied the textile fabrics’ 
luster. In their method, different fabric samples are classi-
fied in six different classes based on the luster determined 
by judgment of ten different inspectors. The luster index, 
obtained by the use of image processing, is then classified 
in six fuzzy classes based on fuzzy logic theory. Results 
prove that fuzzy classification is confirmed by viewers’ 
judgments. More details on the use of intelligent methods 
in the textiles field may be found in [11], [12],  [13]. 
In this context, several research papers are interested in 
modeling and simulation of textile fabrics in order to pre-
dict and assess their drape. 

F IJSER

http://www.ijser.org/
mailto:hassen_hedfi@yahoo.com


International Journal of Scientific & Engineering Research Volume 5, Issue 6, june-2014                                                                                 914 
ISSN 2229-5518 
 

IJSER © 2014 
http://www.ijser.org  

1.1 Related work 
Fabric drape is among the most important properties re-
lated to the aesthetics of clothing and home furnishings. 
This exhibits comfort and satisfaction sensations among 
consumers and increases the marketing of textile goods. 
Textile fabric drape means the manner in which a fabric is 
deformed under the effect of its own weight when at-
tached by one of its parts. The drape is generally charac-
terized by the formation of folds with curves having vari-
ous shapes and different geometric dimensions. 
Stylios et al. [14] investigated the fabric drapabality. In 
this study, the drape attributes of fabrics (drape coeffi-
cient, number, depth and evenness of folds) were meas-
ured. The relationship between these measurements and 
the subjective evaluation of the fabric drape were mod-
eled for each end-use on a neural network using back 
propagation, which can correctly predict the grades of 
90% of the samples. The relationship between the drape 
attributes and fabric bending, shear and weight was also 
modeled using neural networks. It was found that using 
the natural logarithm of the material property divided 
first by the weight of the fabric produced the most predic-
tive model. 
Lam et al. [15] used Artificial Neural Networks (ANN) to 
predict the Drape Coefficient (DC) and Circularity (CIR) 
of many different kinds of fabrics. Two ANN models 
were used: the Multilayer Perceptron using Backpropaga-
tion (BP) and the Radial Basis Function (RBF). The BP 
method was found to be more efficient than the RBF one 
but the RBF method was the fastest when it came to train-
ing. Comparisons of the two models as well as compari-
sons of the same models using different parameters are 
presented. The authors found that prediction for CIR was 
less accurate than for DC for both neural network archi-
tectures. 
Behera and Mishra [16] proposed an engineered approach 
to fabric development in which a radial basis function 
network is trained with worsted fabric constructional 
parameters to predict functional and aesthetic properties 
of fabrics. An objective method of fabric appearance eval-
uation with the help of digital image processing is intro-
duced. The prediction of fabric properties by the network 
with changing basic fibre characteristics and fabric con-
structional parameters is found to have good correlation 
with the experimental values of fabric functional and aes-
thetic properties. 
Jedda et al. [17] investigated the relationship between the 
fabric drape coefficient measured using drape meter and 

mechanical properties obtained by experimental device: 
the Fabric Assurance by Simple Testing system (FAST). 
Different types of woven fabrics were tested. Three re-
gression models are proposed using the multiple linear 
regressions. The regression results were analyzed and 
compared with those obtained from a neural model used 
to predict fabric drape. More accuracy is obtained with 
neural network model. 
Pattanayak et al. [18] used an instrument based on a digi-
tal image processing technique to measure drape parame-
ters and the Kawabata evaluation system (KES-F) to as-
sess the low stress mechanical properties. They, then, 
predicted the drape parameters using multiple regres-
sions method and feed-forward back-propagation neural 
network technique. Simple equations are derived using 
regressions method to predict the five shape parameters 
of drape profile (drape coefficient, drape distance ratio, 
fold depth index, amplitude and number of nodes) from 
the low stress mechanical properties. The authors claimed 
that bending, shear and aerial density affect the drape 
parameters most whereas the tensile and compression 
have little effect on the drape parameters. 
 
1.2 Our Proposal 
In this paper, we propose to use the technical and physi-
cal parameters to predict mechanical properties of textile 
fabric by means of Artifical Neural Network. Then, these 
properties are used as inputs for Fnite Element Model. 
The parameters of draped fabrics are then obtained by 
numerical simulation. The artificial neural network is 
tuned by comparison between the actual and simulated 
drape. In this way, we will not need to determine the me-
chanical properties of textile fabrics experimentally. 
 
1.3 Organization 
In the next section, we briefly develop the finite element 
modeling of textile fabrics. Then we present the neural 
networks used for learning the fabric drape and the 
ANN-FEM coupling. Results and discussions will be the 
subject of the last paragraph. 

2 FABRIC FINITE ELEMENT MODELING 
A fabric is obtained by intercrossing two sets of yarn: the 
warp and weft yarn, according to a weave pattern. Sever-
al parameters would be set to obtain a fabric with me-
chanical, physical and aesthetic properties appropriate to 
the end-use of these fabrics. 
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2.1 Woven Fabric Characterization 
The characterization of textile fabrics includes: 

1. Technical parameters, which deals with: 
a. Weave pattern 

It is the manner in which the warp and weft yarns are 
intercrossed to form a strong textile surface: the woven 
fabric. Several types of weave patterns are used for weav-
ing. The most common weave patterns, also known as 
basic, are plain (Fig. 1), twill (Fig. 2) and satin (Fig. 3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

b. Fabric density 
Fabric density includes warp density (WpD) and weft 
density (WtD). Each is a measure of number of yarns per 
unit of length of the fabric in due direction. The units for 
warp density are: ends/cm, ends/10cm, or ends/inch; 

and for weft density: picks/cm, picks/10cm, or 
picks/inch. Fabric density indicates the tightness of the 
fabric for given yarn count. 

c. Warp count (WpC) 
The warp count is a number indicating the mass per unit 
length, or the length per unit mass of warp yarn. It indi-
cates the fineness of warp yarn. The unit used can be the 
Nm - Metric system, in this case warp count is the No of 
1000 meters length per kg of warp yarn. 

d. Weft count (WtC) 
The weft count is a number indicating the mass per unit 
length, or the length per unit mass of weft yarn. It indi-
cates the fineness of weft yarn. The unit used can be the 
Nm - Metric system, in this case weft count is the No of 
1000 meters length per kg of weft yarn. 

2. Physical characterization, which deals with the 
determination of: 

a. Mass density ρ (g m-2): The measurement is per-
formed as follows: we cut a square part of the fabric of 
known area and we weigh the sample using a preci-
sion balance. The test is repeated 5 times and an aver-
age value is calculated. 

b. Thickness of the fabric is denoted δ (mm) 
3. Mechanical characterization, which deals with the 

determination of: 
a. The Young's moduli (MPa) in the warp (Ewp), weft 

(Wwt) and bias (Wbias) directions 
b. The Poisson's ratios in the warp (υwp) and weft 

(υwt) directions 
c. The shear modulus H (MPa), calculated as follow-

ing: 

υυ
−

 −−
 = − −
 
 

1
114 wpwt

bias wp wt

H
E E E

          (1) 

 
d. The flexural moduli (µNm) in the directions: 

warp (Rfwp)  and weft (Rfwt) 
4. Fabric drape characterization, which deals with 

the determination of: 
a. Node Number (NN) 
b. Drape coefficient DC: 

( )
2 2

2 2% 100m s

u s

r r
DC

r r
−

= ×
−

          (2) 

c. Drape Distance Ratio 

( )
22

2 2% 100u

u s

r r
DDR

r r
−

= ×
−

                        (3) 

d. Fold Depth Index 

 
Fig. 1. Plain weave pattern  

 

 
Fig. 2. Twill weave pattern  

 

 
Fig. 3. Satin weave pattern  
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e. Amplitude to Radius 

max min

2
r r

AR
−

=                                    (5) 

Where ur : The radius of undraped fabric, sr  the radius of 

the fabric supporting-disc, mr the average of 16 measured 
rays between disc centre and projected profile: 

16

1

1
16m i

i
r r

=

= ∑                           (6) 

( ) ( )max minmax , mini ir r r r= =           (7) 
 
2.2 The Model 
The equation of motion of the surface of the textile fabric 
can be formulated as follows: [19] 

ρ µ∂ ∂
+ + =

∂∂

 
 2

int
2

extr r f f
tt

 (8) 

Where, 
ρ : The surface density (kg m-2) 
µ : The damping density (Kg m-2 s-1) 

r


: The vector of instantaneous position of a point P be-

longing on the fabric surface. We have ( )=
 

1 2, ,r r a a t , 

( )∈Ω2
1 2,a a denote the parametric variables, defined on 

parametric domainΩ ⊂2 2R , and t indicate the time. 


intf : The internal elastic forces resulting of the defor-
mation occurred in the fabric during motion or when in-
teracting with other solid object or with fluid flow. 
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Where, ( )αβ αβ αβ αβ= − 0s tS w g g and ( )αβ αβ αβ αβ= − 0b tC w b b . These 

coefficients describe material properties: wsαβ, for stretch 
and shear behaviour, and wbαβ, for bending.  

= = = =11 12 21 22, , ,s s s s
wp wtw E w H w H w E               (10) 

= = = =11 12 21 22, 0,b b b b
wp wtw Rf w w w Rf         (11) 

To describe fabric deformations, two tensors of surface 
are used: euclidian tensor G and curvature tensor B.  

( )αβ αβα β
α β

≤ ≤
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Where 

n  denote the unit surface normal:         

∂ ∂ ∂ ∂
= × ×
∂ ∂ ∂ ∂

   


1 2 1 2

r r r rn
a a a a

         (14) 


extf : The external forces such as gravitational 

force ρ=
 

gf g , 

g gravitational acceleration. 

Equation 8 is solved using the finite element method. De-
tails of the resolution algorithm and numerical results are 
reported in [19]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

3 ANN FOR FABRIC DRAPE LEARNING 
3.1 Paramerters Learning 
Artificial Neural Networks (ANN) is used to predict me-
chanical of textile fabrics from technical and physical pa-
rameters. The learning database consists of a wide variety 
of textile fabrics. These fabrics are characterized in terms 
of technical parameters (or parameters of construction), 
mechanical, physical properties and in terms of drape 
properties (or drape attributes). 

 
All ANN inputs and outputs are normalized before train-
ing step using following formula: 

n i i
i

i

t t
t

σ
−

=                                       (15) 

 

 
Fig. 4. Fabric drape characterization (a) drape-meter, (b) circu-
lar fabric sample draped over the support disc of drape-meter, 
(c) a schematic representation of the drape measurement, and 
(d) projected drape profile in which are presented the drape 
geometric drape attribute: Node, length, width, and depth 
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Where, n
it the normalized values of parameter i, it  the 

measured values of parameter i, it its average, and iσ  its 
standard deviation. After normalization, each parameter 
has an average of 0 and a standard deviation equal to 1. 
Experimental database is a divided randomly into three 
subsets: 
1. Training subset containing 70% of samples used for 

gradient computing and for ANN weights and biases 
updating. 

2. Validation subset containing 15% of samples 
3. Test subset containing 15% of samples, used for ANN 

generalization 
 
 
 
 
 
 
 
 
 
 
 
 
 

The parameters of the neural network to be optimized 
are: 

 the number of neurons Nn 
 the number of hidden layer HL 
 the number of iterations Ni  

The neural network architecture is shown in Figure. 5. 
This network is a feed-forward ANN trained with error 
back-propagation algorithm. The ANN weights and bias-
es updating is carried out using the Levenberg-
Marquardt optimization algorithm. The ANN optimality 
criteria are:  
1. The correlation coefficient (R) between the predicted 

and measured values for each output. 
2. The mean squares error (mse): 

( )
2

1

1 N

i i
i

mse t p
N =

= N∑                    (16) 

Where: N is the number of samples, it the target value, 
and ip  the predicted value. 
The optimization of the neurons and hidden layers num-
bers is done in an incremental way using two algorithms 
developed in [20]. 

3.2 ANN-FEM Coupling 
The ANN model is coupled with the model using the fi-
nite element method (FEM-Model) developed for the 
simulation of fabric drapemeter (Fig. 4). This would in-
crease the efficiency of ANN-model and eliminate if not 
reduce the use of experimental characterization of me-
chanical properties of textile fabrics. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 RESULTS AND DISCUSSIONS 
4.1 Validation Test of FEM-Model  
To validate the model, we simulated the tensile tests on 
several types of fabrics of different weaves (plain, twill 
and satin) but identical composition (100% cotton).  
The tensile test is carried out according to the frensh 
standard NFG07-119, also known as the simplified meth-
od. The displacement of the clamps is at constant speed 
(100 mm. mn-1). 
In our study, the Young's modulus is the slope of the lin-
ear part of the stress-strain curve (for elongation values of 
10% to 40%).  
The Young's modulus is a measure of the stiffness of the 
material to stretch/compression deformation.  
The results show a great similarity between the experi-
mental tests and the simulated ones. Indeed, this similari-
ty is even more important that the stress-strain curve is 
linear (strain less than 0.3).  
For this reason, the Young's moduli obtained by the simu-
lations are very similar to those found experimentally.  

 
Fig. 5. Architecture of Artificial Neural Networks (ANN) is 
used to predict mechanical of textile fabrics from technical 
and physical parameters.   

Fig. 6. Coupling ANN-Model for mechanical parameters 
prediction with Finite Element Model developed for simulat-
ing drapemeter. IJSER
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The results of this investigation are included in Figures 7 
(twill fabric), 8 (satin fabric) and 9 (plain fabric).  
The values of experimental and numerical Young's modu-
lus are reported in Table 1. 

 
Once the finite element model is validated, it is used to 
simulate the drape test and for the prediction of fabric 
drape attributes. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2 ANN Prediction of mechanical parameters  
The ANN model is used to predict the mechanical prop-
erties of textile fabrics based on their technical parameters 
and physical properties. We obtained the following re-
sults: 

1. A good ability to predict flexural modulus (Rfwp 
and Rfwt)and the bias Young’s moduli (Ebias) 

2. A lower capacity for predicting the Young's 
modulus (Ewp and Ewt) and Poisson's ratios (υwp 
and υwt) in warp and weft directions.  

Figures 10 and 11 show an example of results obtained for 
flexural moduli (Rfwp) and warp Young moduli (Ewp) 
Table 2 shows an example of results obtained on a plain 
fabric. The coefficient Error represents the error between 
the actual values of mechanical properties and those pre-
dicted by the neural network without ANN-FEM cou-
pling. R denotes the correlation coefficient between the val-
ues predicted by the ANN on the test set. 

TABLE 1 
COMPARAISON BETWEEN EXPERIMENTAL AND SIMULATED 

RESULTS FOR YOUNG’S MODULI DETERMINATION 

 Experimental (MPa) Simulated (MPa) 
 Ewp Ewt Ebias Ewp Ewt Ebias 
Twill  13.07 1.04 1.9 13.78 1.13 2.7 
Satin 239.9 81.89 214 264.8 50 235 
Plain 10 19.8 11.72 11.24 20.2 11.76 

 
Fig. 7. Experimental and simulated traction test carried out 
on a twill fabric. This test is used for determing Young's 
moduli in warp, weft and bias directions 

 
Fig. 8. Experimental and simulated traction test carried out 
on a satin fabric. This test is used for determing Young's 
moduli in warp, weft and bias directions 

 
Fig. 9. Experimental and simulated traction test carried out 
on a plain fabric. This test is used for determing Young's 
moduli in warp, weft and bias directions IJSER
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4.3 Prediction using ANN-FEM coupling 
ANN-FEM coupling is performed using the algorithm 
shown in Figure 6. This algorithm allows the identifica-

tion of mechanical parameters of fabric from technical 
and physical parameters and improves the predictability 
of the parameters related to the stretch behaviour: Ewp, 
Ewt, υwp, and υwt by simulating the drapemeter test.  
The algorithm is executed until the error between meas-
ured drape attributes and those found by the simulation 
becomes less than a limit value 210ε −= . 

( ) Predicted DA-Actual DA 100
Actual DA

Error DA = ×                  (17) 

Where, DA=DC, NN, DDR, ARR or FDI 
The results obtained show the efficiency of coupling be-
tween the ANN model and FEM-medel. Indeed, this cou-
pling can increase the size of the training database by 
adding, new mechanical parameters obtained from the 
simulation based on the FEM model. 
Figure 12 shows the evolution of the error on the predic-
tion based on iterations of the ANN-FEM model. The 
number of iterations needed to improve the predictability 
varies from one parameter to another. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

TABLE 2 
MECHANICAL PROPERTIES PREDECTIBILITY USING ANN-

MODEL 

Mechanical properties Error (%) R 
Ewp (MPa) 13.02 0.610 
Ewt (MPa) 14.41 0.551 
Ebias (MPa) 0.04 0.859 
υwp 8.11 0.641 
υwt 10.27 0.724 
Rfwp (µNm) 0.0001 0.815 
Rfwt (µNm) 0.0003 0.906 

 

 
Fig. 10. Regressions between warp flexural moduli (Rfwp) and 
technical and physical properties using optimized ANN (Noro-
ne-number=35, Hidden-layer=2, and Iterations-Number=30) 

 
Fig. 11. Regressions between warp Young moduli (Ewp) and 
technical and physical properties using optimized ANN (Noro-
ne-number=35, Hidden-layer=2, and Iterations-Number=30) 

 

 
Fig. 12. Improving mechanical properties prediction from 
technical and physical parameters using ANN-FEM coupled 
model 
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Table 3 shows an example of results obtained on a plain 
fabric. The coefficient Error represents the error between 
the actual values of mechanical properties and those pre-
dicted by the neural network using ANN-FEM coupling. 
R denotes the correlation coefficient between the values 
predicted by the ANN on the test set. 

 
Figure 13 and 14 show the results of applying our method 
to improve the predictability of the parameters Ewp and 
Rfwp by coupling ANN-FEM models. 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 CONCLUSION 
In this paper, the objective is to predict with great effi-
ciency the mechanical properties of textile fabrics from 
their technical parameters (warp and weft yarn counts 
and warp and weft yarn densities), and from two easily 
measurable physical properties (thickness and mass den-
sity). The prediction was based on the use of artificial 
neural networks.  
The problem encountered when using the ANN model is 
the low predictability of properties related to the tensile-
compression behavior of fabric mainlyYoung's modulus 
and Poisson's ratios in warp and weft directions. 
The idea is toimprove the predictability of these parame-
ters by increasing the training database of neural network 
by adding data obtained from the simulated tests. 
Indeed, a finite element model simulating the dynamic 
behavior of textile fabrics is developed and validated. 
This model is then used to simulate the drape meter.  
The originality of this work is: 

1. Reduce the use of mechanical tests to character-
ize textile fabrics 

2. Replace these tests with virtual simulations. 
3. Make good use of artificial neural networks by 

coupling them with finite element models de-
scribing the dynamic behavior of textile materi-
als. 

This approach can be improved by adding fuzzy logic 
rules to decide about the acceptance and the incorpora-
tion of the identified parameters in the training database. 

TABLE 3 
IMPROVING MECHANICAL PROPERTIES PREDECTIBILITY US-

ING ANN-FEM COUPLED MODEL 
Mechanical properties Error (%) R 
Ewp (MPa) 1.2 0.84 
Ewt (MPa) 1.07 0.86 
Ebias (MPa) 10-4 0.97 
υwp 0.97 0.81 
υwt 2.01 0.89 
Rfwp (µNm) 10-4 0.96 
Rfwt (µNm) 2.10-4 0.98 

 
Fig. 14. Regressions between warp Young moduli (Ewp) and 
technical and physical properties using coupled ANN-FEM 
Model (Norone-number=35, Hidden-layer=2, and Iterations-
Number=30) 

 

 
Fig. 13. Regressions between warp Young moduli (Rfwp) and 
technical and physical properties using coupled ANN-FEM 
Model (Norone-number=35, Hidden-layer=2, and Iterations-
Number=30) 
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