Existence and Uniqueness Solution for System of Nonlinear Fractional Integro-Differential Equation

Azhaar H. Sallo
azhaarsallo@gmail.com
Department of Mathematics, Faculty of Science, University of Duhok, Kurdistan Region, Iraq.

Abstract

This article investigates a system of nonlinear fractional integro – differential equations with initial conditions. Some new existence and uniqueness results are obtained by applying Picard approximation method.

Keywords: Nonlinear Fractional Integro-Differential Equation, Existence and Uniqueness Solution, Caputo Fractional Derivative, Picard Approximation Method.

1 Introduction

In the past few years, fractional order models are found to be more adequate than integer order models for some real word problems. Fractional derivatives provide an excellent tool for the description of memory and hereditary properties of various materials and processes. Integro-differential equations arise in many engineering and scientific disciplines often as approximation to partial differential equations, which represent much of the continuum phenomena. The existence and uniqueness problems of fractional nonlinear differential and integro-differential equations as a basic theoretical part of some applications are investigated by many authors (see for examples [3], [6], [5]and [7]).

Most of the practical systems are integro-differential equations in nature and hence the study of integro-differential equations is very important. Exact solutions of integral equations play an important role in the proper understanding of qualitative features of many phenomena and processes in various areas of natural
science, it can be used to verify the consistency and estimate errors of various numerical, asymptotic, and approximate methods. The fractional integro-differential equations have been studied by many authors ([1],[2],[4],[9],[10], and [11]).

In this work, we considered the following system of nonlinear fractional integro-differential equations of the form:

\[
\begin{align*}
x^{\alpha} t &= f(t,x(t),y(t) + \int_{0}^{b} k_1(t,s,x(s),y(s)) \, ds \\
x(0) &= c_1 \\
y^{\alpha} t &= g(t,x(t),y(t) + \int_{0}^{b} k_2(t,s,x(s),y(s)) \, ds \\
y(0) &= c_2
\end{align*}
\]

Where \(0 < \alpha \leq 1\), \(0 \leq s \leq t \leq b\), \(c_1, c_2 \in \mathbb{R}\).

Let the vectors functions \(f(t,x(t),y(t)\), \(g(t,x(t),y(t)\), \(k_1(t,s,x(t),y(t)\) and \(k_2(t,s,x(t),y(t)\) are defined and continuous in the domain

\[
t,s,x,y \in [0,b] \times [0,b] \times D_1^* \times D_2^*
\]

(2)

Where \(D_1^*\) and \(D_2^*\) are closed and bounded domains subsets of Euclidean space \(\mathbb{R}^n\). Suppose that the vectors functions satisfying the following inequalities:

A_1 There exists constants \(M_1,M_2\) such that \(\|f(t,x,y)\| \leq M_1\) and \(\|k_1(t,s,x,y)\| \leq M_2\)

A_2 There exists constants \(M_3,M_4\) such that \(\|g(t,x,y)\| \leq M_3\) and \(\|k_2(t,s,x,y)\| \leq M_4\)
There exist constants L_1, L_2 such that
\[\| f(t, x_2, y_2) - f(t, x_1, y_1) \| \leq L_1 \| x_2 - x_1 \| + \| y_2 - y_1 \| \]

and
\[\| k_1(t, s, x_2, y_2) - k_1(t, s, x_1, y_1) \| \leq L_2 \| x_2 - x_1 \| + \| y_2 - y_1 \| \]

There exist constants L_3, L_4 such that
\[\| g(t, x_2, y_2) - g(t, x_1, y_1) \| \leq L_3 \| x_2 - x_1 \| + \| y_2 - y_1 \| \]

and
\[\| k_2(t, s, x_2, y_2) - k_2(t, s, x_1, y_1) \| \leq L_4 \| x_2 - x_1 \| + \| y_2 - y_1 \| \]

for all $t \in [0, b]$, $x, x_1, x_2 \in D_1^+$ and $y, y_1, y_2 \in D_1^+$, where M_1, M_2, M_3, M_4 are positive constant vectors, L_1, L_2, L_3 and L_4 are positive constant matrices, and also $\| \cdot \|_{t \in [0, b]} = \max \| \cdot \|$.

We define the non-empty sets:

\[
D_{1\alpha} = D_1 - \frac{M_1 + M_2 b^{\alpha}}{\Gamma \alpha + 1} \\
D_{2\alpha} = D_2 - \frac{M_3 + M_4 b^{\alpha}}{\Gamma \alpha + 1}
\]

Furthermore, we suppose that the greatest eigenvalue $\lambda_{2\alpha \max}$ of the matrix:

\[
\Lambda_{\alpha} t = \begin{pmatrix}
\frac{L_1 + bL_2}{\Gamma \alpha + 1} t^{\alpha} & \frac{L_1 + bL_2}{\Gamma \alpha + 1} t^{\alpha} \\
\frac{L_3 + bL_4}{\Gamma \alpha + 1} t^{\alpha} & \frac{L_3 + bL_4}{\Gamma \alpha + 1} t^{\alpha}
\end{pmatrix}
\]

does not exceed unity, i.e.:

\[
\lambda_{2\alpha \max} \Lambda_{\alpha} t = \left[\frac{L_1 + bL_2}{\Gamma \alpha + 1} + \frac{L_3 + bL_4}{\Gamma \alpha + 1} \right] < 1
\] (4)

2 Preliminaries
In this section, we introduce some definitions, and some fundamental facts of Caputo’s derivative of fractional order (see [13], [14]).

Definition 2.1. Caputo’s derivative for a function $f : 0, \infty \to \mathbb{R}$ can be written as

$$i^D_{0} \alpha f(t) = \frac{1}{\Gamma(n-\alpha)} \int_{0}^{t} \frac{f^{(n)}(s)ds}{(t-s)^{\alpha+1-n}}, \quad n = \alpha + 1$$

Where α denotes the integer part of real number α.

Definition 2.2. The integral

$$i^I_{0} \alpha f(t) = \frac{1}{\Gamma(\alpha)} \int_{0}^{t} \frac{f(s)ds}{(t-s)^{1-\alpha}}, \quad t > 0$$

Where $\alpha > 0$, is called Riemann-Liouville fractional integral of order α.

Definition 2.3. A sequence f_{n} of functions defined on a set D is said to converge uniformly on D if given $\varepsilon > 0$, there is a positive integer number N_{0} such that for all $t \in D$ and all $n \geq N_{0}$, we have

$$\|f_{n}(t) - f(t)\| < \varepsilon.$$

Lemma 2.1. Let $\alpha > 0$, then:

$$i^D_{a} \alpha y(t) = y(t) + c_{0} + c_{1}t + c_{2}t^{2} + \ldots + c_{n-1}t^{n-1}, \quad \text{for some } c_{i} \in \mathbb{R}, i=0, 1, 2, \ldots, n-1, n = \alpha + 1.$$

3 The Main Results.

The study of the existence and uniqueness solution for the system of nonlinear fractional integro-differential equations (1) will be introduced by the theorems:

Theorem 3.1. (Existence theorem)
Let \(f(t,x,y), g(t,x,y), k_1(t,s,x,y) \) and \(k_2(t,s,x,y) \) be vector functions which are defined and continues on the domains (2). If the hypotheses \(A_1 - A_4 \) are satisfied, then the system of nonlinear fractional integro-differential equations (1) has a solution

\[
\begin{align*}
x(t,x_0,y_0) = c_1 + \frac{1}{\Gamma(a)} \int_0^t \left(t-s \right)^{a-1} \left[f(s,x,s,x_0,y_0,y,s,x_0,y_0) + \int_0^b k_1(t,s,x,s,x_0,y_0,y,t,x_0,y_0) \, ds + \int_0^b k_2(t,s,x,s,x_0,y_0,y,t,x_0,y_0) \, ds \right] \\
y(t,x_0,y_0) = c_2 + \frac{1}{\Gamma(a)} \int_0^t \left(t-s \right)^{a-1} \left[f(s,x,s,x_0,y_0,y,s,x_0,y_0) + \int_0^b k_1(t,s,x,s,x_0,y_0,y,t,x_0,y_0) \, ds + \int_0^b k_2(t,s,x,s,x_0,y_0,y,t,x_0,y_0) \, ds \right]
\end{align*}
\]

Proof: Consider the sequences of the functions \(x_m(t,x_0,y_0) \) and \(y_m(t,x_0,y_0) \) are continuous and defined by:

\[
x_{m+1}(t,x_0,y_0) = c_1 + \frac{1}{\Gamma(a)} \int_0^t \left(t-s \right)^{a-1} f(s,x,s,x_0,y_0,y,s,x_0,y_0) \, ds + \frac{1}{\Gamma(a)} \int_0^t \left(t-s \right)^{a-1} \left[\int_0^b k_1(t,s,x,s,x_0,y_0,y,t,x_0,y_0) \, ds + \int_0^b k_2(t,s,x,s,x_0,y_0,y,t,x_0,y_0) \, ds \right] (5)
\]

\[
y_{m+1}(t,x_0,y_0) = c_1 + \frac{1}{\Gamma(a)} \int_0^t \left(t-s \right)^{a-1} g(s,x,s,x_0,y_0,y,s,x_0,y_0) \, ds + \frac{1}{\Gamma(a)} \int_0^t \left(t-s \right)^{a-1} \left[\int_0^b k_1(t,s,x,s,x_0,y_0,y,t,x_0,y_0) \, ds + \int_0^b k_2(t,s,x,s,x_0,y_0,y,t,x_0,y_0) \, ds \right] (6)
\]

The proof will be given in several steps.

Step 1: We shall to prove \(x_m(t,x_0,y_0) \in D_1 \) and \(y_m(t,x_0,y_0) \in D_2 \) for all \(t \in [0,b] \), \(x_0 \in D_{1a} \) and \(y_0 \in D_{2a} \)
When \(m = 1 \) and using \(A_1, A_1 \), we have:

\[
\| x_1(t,x_0,y_0) - c_1 \| \leq \frac{1}{\Gamma} \int_0^t t - s \left\| f(s,x_0,s,x_0,y_0,y_0,s,x_0,y_0) \right\| ds + \\
+ \frac{1}{\Gamma} \int_0^t t - s \left\| k_1 s, \tau, x_0, \tau, x_0, y_0, y_0 \right\| d \tau \, ds
\]

\[
\leq \frac{M_1 + bM_2}{\Gamma} t^\alpha + 1
\]

that is, \(\| x_1(t,x_0,y_0) - c_1 \| \leq \frac{M_1 + bM_2}{\Gamma} t^\alpha + 1 \)

therefore

\[
\| y_1(t,x_0,y_0) - c_2 \| \leq \frac{1}{\Gamma} \int_0^t t - s \left\| g(s,x_0,s,x_0,y_0,y_0,s,x_0,y_0) \right\| ds + \\
+ \frac{1}{\Gamma} \int_0^t t - s \left\| k_2 s, \tau, x_0, \tau, x_0, y_0, y_0 \right\| d \tau \, ds
\]

\[
\leq \frac{M_3 + bM_4}{\Gamma} t^\alpha + 1
\]

that is, \(\| y_1(t,x_0,y_0) - c_2 \| \leq \frac{M_3 + bM_4}{\Gamma} t^\alpha + 1 \)

so that, \(x_1(t,x_0,y_0) \in D_1^* \) and \(y_1(t,x_0,y_0) \in D_2^* \) for all \(x_0 \in D_{1a}, y_0 \in D_{2a}, t \in [0,b] \).

Therefore by mathematical induction, we get

\[
\| x_m(t,x_0,y_0) - c_1 \| \leq \frac{M_1 + bM_2}{\Gamma} t^\alpha + 1 \quad \text{and} \quad \| y_m(t,x_0,y_0) - c_1 \| \leq \frac{M_3 + bM_4}{\Gamma} t^\alpha + 1
\]

In the others words
\[x_m(t,x_0,y_0) \in D_1^*, \quad \forall \ x_0 \in D_{2\alpha}, \ t \in [0,b) \]
\[y_m(t,x_0,y_0) \in D_1^*, \quad \forall \ y_0 \in D_{2\alpha}, \ t \in [0,b), \ m = 0,1,2,... \]

Step 2: we claim that the sequences of functions (5) and (6) are uniformly convergent on the domain (2).

For \(m=1 \) and using \(A_3, \ A_4 \). We find that:

\[
\| x_2(t,x_0,y_0) - x_1(t,x_0,y_0) \| \leq \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \left\| f(s,x_1,x_0,y_0,y_1,s,x_0,y_0) - f(s,x_0,s,x_0,y_0,y_0,s,x_0,y_0) \right\| ds + \\
\quad + \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \left\| k_1(s,x_1,x_0,y_0,y_1,x_0,y_0) - k_1(s,x_0,x_0,y_0,y_0,x_0,y_0) \right\| d\tau ds
\]

\[
\leq \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} L_1 \left\| x_1(s,x_0,y_0,x_0,s,x_0,y_0) + y_1(s,x_0,y_0,y_0,s,x_0,y_0) \right\| ds + \\
\quad + \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} L_2 \left\| x_1(s,x_0,y_0,x_0,s,x_0,y_0) + y_1(s,x_0,y_0,y_0,s,x_0,y_0) \right\| d\tau ds
\]

\[
\| x_2(t,x_0,y_0) - x_1(t,x_0,y_0) \| \leq \frac{L_1 + bL_2}{\Gamma(\alpha+1)} \left\| x_1(s,x_0,y_0,x_0,s,x_0,y_0) + y_1(s,x_0,y_0,y_0,s,x_0,y_0) \right\|
\]

and

\[
\| y_2(t,x_0,y_0) - y_1(t,x_0,y_0) \| \leq \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \left\| g(s,x_1,x_0,y_0,y_1,s,x_0,y_0) - g(s,x_0,s,x_0,y_0,y_0,s,x_0,y_0) \right\| ds + \\
\quad + \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \left\| k_2(s,x_1,x_0,y_0,y_1,x_0,y_0) - k_2(s,x_0,x_0,y_0,y_0,x_0,y_0) \right\| d\tau ds
\]

\[
\leq \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} L_3 \left\| x_1(s,x_0,y_0,x_0,s,x_0,y_0) + y_1(s,x_0,y_0,y_0,s,x_0,y_0) \right\| ds +
\]

\[
\| y_2(t,x_0,y_0) - y_1(t,x_0,y_0) \| \leq \frac{L_3 + bL_4}{\Gamma(\alpha+1)} \left\| x_1(s,x_0,y_0,x_0,s,x_0,y_0) + y_1(s,x_0,y_0,y_0,s,x_0,y_0) \right\|
\]
\[+ \frac{1}{\Gamma} \int_0^t t - s \left[b \int_0^b \left\| x_1 \tau, x_0, y_0 - x_0 \tau, x_0, y_0 \right\| + \left\| y_1 \tau, x_0, y_0 - y_0 \tau, x_0, y_0 \right\| \right] ds \]

\[\left\| y_2(t, x_0, y_0) - y_1(t, x_0, y_0) \right\| \leq \frac{L_1 + bL_4}{\Gamma} \frac{t^\alpha}{\alpha + 1} \left\| x_1 s, x_0, y_0 - x_0 s, x_0, y_0 \right\| + \frac{L_1 + bL_2}{\Gamma} \frac{t^\alpha}{\alpha + 1} \left\| y_1 s, x_0, y_0 - y_0 s, x_0, y_0 \right\| \]

So that

\[\left\| x_{m+1}(t, x_0, y_0) - x_m(t, x_0, y_0) \right\| \leq \frac{L_1 + bL_2}{\Gamma} \frac{t^\alpha}{\alpha + 1} \left\| x_m s, x_0, y_0 - x_{m-1} s, x_0, y_0 \right\| + \frac{L_1 + bL_2}{\Gamma} \frac{t^\alpha}{\alpha + 1} \left\| y_m s, x_0, y_0 - y_{m-1} s, x_0, y_0 \right\| \] (7)

\[\left\| y_{m+1}(t, x_0, y_0) - y_m(t, x_0, y_0) \right\| \leq \frac{L_1 + bL_4}{\Gamma} \frac{t^\alpha}{\alpha + 1} \left\| x_m s, x_0, y_0 - x_{m-1} s, x_0, y_0 \right\| + \frac{L_1 + bL_4}{\Gamma} \frac{t^\alpha}{\alpha + 1} \left\| y_m s, x_0, y_0 - y_{m-1} s, x_0, y_0 \right\| \] (8)

Rewrite the inequalities (7) and (8) as a vectors:

\[
\begin{bmatrix}
\| x_{m+1}(t, x_0, y_0) - x_m(t, x_0, y_0) \| \\
\| y_{m+1}(t, x_0, y_0) - y_m(t, x_0, y_0) \|
\end{bmatrix} \leq \begin{bmatrix}
\frac{L_1 + bL_2}{\Gamma} \frac{t^\alpha}{\alpha + 1} \\
\frac{L_1 + bL_4}{\Gamma} \frac{t^\alpha}{\alpha + 1}
\end{bmatrix} \begin{bmatrix}
\| x_m s, x_0, y_0 - x_{m-1} s, x_0, y_0 \| \\
\| y_m s, x_0, y_0 - y_{m-1} s, x_0, y_0 \|
\end{bmatrix}
\]

or

\[
V_{(m+1)\tau} t, x_0, y_0 \leq \Lambda_{\alpha} t V_{m\alpha} t, x_0, y_0
\]

\[
V_{(m+1)\tau} t, x_0, y_0 = \begin{bmatrix}
\| x_{m+1}(t, x_0, y_0) - x_m(t, x_0, y_0) \| \\
\| y_{m+1}(t, x_0, y_0) - y_m(t, x_0, y_0) \|
\end{bmatrix}
\]

\[
\Lambda_{\alpha} t = \begin{bmatrix}
\frac{L_1 + bL_2}{\Gamma} \frac{t^\alpha}{\alpha + 1} \\
\frac{L_1 + bL_4}{\Gamma} \frac{t^\alpha}{\alpha + 1}
\end{bmatrix}
\]
\[V_{m\alpha} t, x_0, y_0 = \begin{pmatrix} x_m s, x_0, y_0 - x_{m-1} s, x_0, y_0 \\ y_m s, x_0, y_0 - y_{m-1} s, x_0, y_0 \end{pmatrix} \]

from (9) we get:

\[V_{(m+1)\alpha} t \leq \lambda_{0\alpha} t V_{m\alpha}(t) \]

Where \(\lambda_{0\alpha} = \max_{t \in [0, b]} \lambda_{\alpha}(t) \). To prove the sequences (5) and (6) uniformly convergent, we must find the eigenvalue of the matrix (10) as the follows:

\[\begin{vmatrix} \frac{L_1 + bL_2}{\Gamma \alpha + 1} - \lambda_{\alpha} & \frac{L_1 + bL_2}{\Gamma \alpha + 1} \\ \frac{L_3 + bL_4}{\Gamma \alpha + 1} & \frac{L_3 + bL_4}{\Gamma \alpha + 1} - \lambda_{\alpha} \end{vmatrix} = 0 \]

\[\left(\frac{L_1 + bL_2}{\Gamma \alpha + 1} - \lambda_{\alpha} \right) \left(\frac{L_3 + bL_4}{\Gamma \alpha + 1} - \lambda_{\alpha} \right) - \frac{L_1 + bL_2}{\Gamma \alpha + 1} \frac{L_3 + bL_4}{\Gamma \alpha + 1} = 0 \]

\[\lambda_{\alpha 1} = 0 \quad \text{or} \quad \lambda_{\alpha 2} = \left(\frac{L_3 + bL_4}{\Gamma \alpha + 1} + \frac{L_1 + bL_2}{\Gamma \alpha + 1} \right) \]

By iteration we find:

\[V_{(m+1)\alpha} \leq \lambda_{0\alpha}^m V_{0\alpha} \land \quad V_{0\alpha} = \begin{pmatrix} M_1 + bM_2 \frac{b^\alpha}{\Gamma \alpha + 1} \\ M_3 + bM_4 \frac{b^\alpha}{\Gamma \alpha + 1} \end{pmatrix} \]

hence we obtain,

\[\sum_{i=1}^{m} V_{i\alpha} \leq \sum_{i=1}^{m} \lambda_{0\alpha}^{i-1} V_{0\alpha} \]
Since the matrix Λ_{0x} has greatest eigenvalue $\lambda_{\text{max}} \Lambda_{0x}$ and by (4) we find the sequences (5) and (6) uniformly convergent to functions $x \ t, x_0, y_0$ and $y \ t, x_0, y_0$, i.e.

$$\lim_{m \to \infty} x_m \ t, x_0, y_0 = x \ t, x_0, y_0$$
$$\lim_{m \to \infty} y_m \ t, x_0, y_0 = y \ t, x_0, y_0$$

Step 3: We have to show that $x \ t, x_0, y_0 \in D_1^*$ and $y \ t, x_0, y_0 \in D_2^*$, $\forall x_0 \in D_{1\alpha}, y_0 \in D_{2\alpha}, t \in 0, b$

Indeed, it is enough to show that

$$\lim_{m \to \infty} \left\{ \frac{1}{\alpha} \int_0^t (t-s)^{a-1} \begin{bmatrix} f(s, x_m \ s, x_0, y_0, y_m \ s, x_0, y_0) + \int_0^b k_1(s, \tau, x_m \tau, x_0, y_0, y_m \tau, x_0, y_0) \ d\tau \end{bmatrix} \ ds \right\}$$
$$\lim_{m \to \infty} \left\{ \frac{1}{\alpha} \int_0^t (t-s)^{a-1} \begin{bmatrix} g(s, x_m \ s, x_0, y_0, y_m \ s, x_0, y_0) + \int_0^b k_2(s, \tau, x_m \tau, x_0, y_0, y_m \tau, x_0, y_0) \ d\tau \end{bmatrix} \ ds \right\}$$

$$= \left\{ \frac{1}{\alpha} \int_0^t (t-s)^{a-1} \begin{bmatrix} f(s, x \ s, x_0, y_0, y \ s, x_0, y_0) + \int_0^b k_1(s, \tau, x \tau, x_0, y_0, y \tau, x_0, y_0) \ d\tau \end{bmatrix} \ ds \right\}$$
$$\left\{ \frac{1}{\alpha} \int_0^t (t-s)^{a-1} \begin{bmatrix} g(s, x \ s, x_0, y_0, y \ s, x_0, y_0) + \int_0^b k_2(s, \tau, x \tau, x_0, y_0, y \tau, x_0, y_0) \ d\tau \end{bmatrix} \ ds \right\}$$

$$\leq \left\{ \frac{1}{\alpha} \int_0^t (t-s)^{a-1} \begin{bmatrix} f(s, x_m \ s, x_0, y_0, y_m \ s, x_0, y_0) + \int_0^b k_1(s, \tau, x_m \tau, x_0, y_0, y_m \tau, x_0, y_0) \ d\tau \end{bmatrix} \ ds \right\}$$
$$+ \left\{ \frac{1}{\alpha} \int_0^t (t-s)^{a-1} \begin{bmatrix} k_1(s, \tau, x_m \tau, x_0, y_0, y_m \tau, x_0, y_0) - k_1(s, \tau, x \tau, x_0, y_0, y \tau, x_0, y_0) \ \ d\tau \end{bmatrix} \ ds \right\}$$

$$+ \left\{ \frac{1}{\alpha} \int_0^t (t-s)^{a-1} \begin{bmatrix} f(s, x \ s, x_0, y_0, y \ s, x_0, y_0) + \int_0^b k_2(s, \tau, x \tau, x_0, y_0, y \tau, x_0, y_0) \ d\tau \end{bmatrix} \ ds \right\}$$
\[+ \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{a-1} \left(\int_0^b \left| k_1 s, \tau, x_m \tau, x_0, y_0 \right| + y_m \tau, x_0, y_0 - k_1 s, \tau, x, \tau, x_0, y_0 \right) ds \]

\[\leq \frac{L_1 + bL_2}{\Gamma(\alpha)} \int_0^t (t-s)^{a-1} \left(\| x_m s, x_0, y_0 - x \| + \| y_m s, x_0, y_0 - y \| \right) ds \]

\[\leq \frac{L_1 + bL_2}{\Gamma(\alpha)} \int_0^t (t-s)^{a-1} \left(\| x_m s, x_0, y_0 - x \| + \| y_m s, x_0, y_0 - y \| \right) ds \]

Similarly

\[+ \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{a-1} \left(\int_0^b \left| k_2 s, \tau, x_m \tau, x_0, y_0 \right| + y_m \tau, x_0, y_0 - k_2 s, \tau, x, \tau, x_0, y_0 \right) ds \]

\[\leq \frac{L_3 + bL_4}{\Gamma(\alpha)} \int_0^t (t-s)^{a-1} \left(\| x_m s, x_0, y_0 - x \| + \| y_m s, x_0, y_0 - y \| \right) ds \]

Since the sequences \(x_m t, x_0, y_0 \) and \(y_m t, x_0, y_0 \) are uniformly convergent to the functions \(x t, x_0, y_0 \) and \(y t, x_0, y_0 \) respectively on the interval \(0, b \), then

\[\frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{a-1} \left(\int_0^b \left| f s, x_m s, x_0, y_0 \right| + y_m \tau, x_0, y_0 \right) ds \]

\[\frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{a-1} \left(\int_0^b \left| g s, x_m s, x_0, y_0 \right| + y_m \tau, x_0, y_0 \right) ds \]

\[\frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{a-1} \left(\int_0^b \left| h s, x_m s, x_0, y_0 \right| + y_m \tau, x_0, y_0 \right) ds \]

\[\frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{a-1} \left(\int_0^b \left| i s, x_m s, x_0, y_0 \right| + y_m \tau, x_0, y_0 \right) ds \]
Therefore

\[
\lim_{m \to a} \left(\frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \left[f(s, x_m, y_m, s, x_0, y_0) + \int_0^b k_1 s, \tau, x_m, \tau, x_0, y_0 d \tau \right] ds \right)
\]

\[
= \left(\frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \left[f(s, x, y, s, x_0, y_0) + \int_0^b k_1 s, \tau, x, \tau, x_0, y_0 d \tau \right] ds \right)
\]

We deduce that \((x, y, t, x_0, y_0)\) is a solution for the system of nonlinear fractional integro-differential equations (1).

Theorem 3.2. (Uniqueness theorem)

Assume that the hypotheses \(A_1 - A_4\) are satisfying. Then the system of nonlinear fractional integro-differential equations (1) has a unique solution.

Proof: Let us consider \(\left(\begin{array}{c} p(t, x_0, y_0) \\ q(t, x_0, y_0) \end{array}\right)\) to be another solution of the system (1), that is

\[
\begin{cases}
 p(t, x_0, y_0) = c_1 + \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \left[f(s, p, s, x_0, y_0, q, s, x_0, y_0) + \int_0^b k_1 s, \tau, p, \tau, x_0, y_0, q, \tau, x_0, y_0 d \tau d s \right] \\
 q(t, x_0, y_0) = c_2 + \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} \left[f(s, p, s, x_0, y_0, q, s, x_0, y_0) + \int_0^b k_2 s, \tau, p, \tau, x_0, y_0, q, \tau, x_0, y_0 d \tau d s \right]
\end{cases}
\]

hence we have...
\[\left\| x, t, x_0, y_0 \right\| \leq \frac{1}{\Gamma} \int_0^t (t-s)^{\alpha-1} \left[\int_0^t \left(s, x, s, x_0, y_0 \right) - p, s, x_0, y_0 \right] \, ds \]

\[\left\| y, t, x_0, y_0 \right\| \leq \frac{L_1 + bL_2}{\Gamma} \int_0^t (t-s)^{\alpha-1} \left[\int_0^t \left(s, x, s, x_0, y_0 \right) - p, s, x_0, y_0 \right] \, ds \]

Similarly, we get:

\[\left\| y, t, x_0, y_0 \right\| \leq \frac{L_1 + bL_2}{\Gamma} \int_0^t (t-s)^{\alpha-1} \left[\int_0^t \left(s, x, s, x_0, y_0 \right) - p, s, x_0, y_0 \right] \, ds \]

So that

\[\left\| s, x, y_0 \right\| \leq \Lambda_0, \quad \left\| y, s, x_0, y_0 \right\| \leq \Lambda_0 \]

By iteration we have:

\[\left\| s, x, y_0 \right\| \leq \Lambda_m, \quad \left\| y, s, x_0, y_0 \right\| \leq \Lambda_m \]

But From the condition (4), we have \(\Lambda_m \to 0 \) when \(m \to \infty \), hence we obtain that:

\[x, t, x_0, y_0 = p, t, x_0, y_0 \quad \text{and} \quad y, t, x_0, y_0 = q, t, x_0, y_0 \quad \text{. i.e.} \quad \left\{ \begin{array}{l} x, t, x_0, y_0 \\ y, t, x_0, y_0 \end{array} \right\} \]

is a unique solution for the system of nonlinear fractional integro-differential equations (1) on the domain (2).
References

[8] Mohammed M. Matar , existence and uniqueness for fractional semilinear mixed Volterraa- Fredholm

