
International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 1321
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Effect of SOLID Design Principles on Quality of
 Software: An Empirical Assessment

Harmeet Singh, Syed Imtiyaz Hassan

Abstract— Design is one of the important phases of software development life cycle, which has an impact on entire life cycle of the
project. If the design is good then all other phases of Software development life cycle like coding, maintenance and support will be stress
and hassle-free. The availability of lot of data has proved that designing has a significant role and it directly impacts the quality and
performance requirements. The world of Agile Development today has led the developer to compete with the latest features and
technologies in the market. However for the naïve users it is difficult to maintain the design quality if there are no standard guidelines
available. The design quality is sometime depend on developer expertise and experience only, so we must have standard and proved
design guidances to work. If the software design is in proper accordance with the principles and patterns then it can increase the software
re-usability, maintainability and scalability. This research paper focuses on empirical analysis to prove the SOLID design principles
guidelines by using a working prototype, applying the design principles to it and then evaluating the prototype by using different metrics.

Index Terms— Design Principles, CKJM metrics, Software design, SOLID Principles, Software quality.

—————————— ——————————

1 INTRODUCTION
oftware design helps to imagine the overall system and
reduces the cost involved in developing and supporting

the project [1]. Since it is not an easy task to identify the feasi-
bility of the actual requirements at the very start of the project,
therefore the design should support scalability which will al-
low the induction of the new requirements into the software
architecture. To support scalability there are a few important
factors [2] on which the designer should concentrate while
thinking about the software design so as to avoid redesigning.
These factors include rigidity, fragility, immobility and viscos-
ity. Rigidity specifies the difficulty measure of changing the
software. Fragility is the tendency of the software to break
every time it is changed. Immobility is the inability to reuse
software from the other projects or parts of software from the
same project. Viscosity is the inability to preserve the design of
the system which can degrade if a proper solution is not in-
corporated pertaining to any changes in the system require-
ment.
The presence of these four factors results in a poor architec-
ture. Any application that demonstrates these factors is actual-
ly suffering from a bad design. To handle these factors we
have some set of guidelines introduced by Robert Martin [2]
called Design Principles. This paper contains an empilical as-
sessment of the effect of SOLID principles on the software
quality using a small project. This project is named as Payroll
System. We are going to implement this system with two dif-
ferent designs, without and with solid principles. We captured
the violation of these principles in the first design and the im-
provements and benefits obtained from the implementation of
these principles in the second design. We compare the results
by generating the CKJM (Chidamber and Kemerer Java Met-
rics) for both the cases and proved these design guidance.

2 OVERVIEW OF SOLID DESIGN PRINCIPLES
2.1 S-The Single Responsibility Principle
"There Should Never Be More Than One Reason for a Class to
Change [2]." The Single Responsibility Principle (SRP) is con-
sidered to be one reason for change. If there is more than one
motive for changing a class, then that class is assumed to have
more than one responsibility, which results as high coupling.
This kind of coupling leads to fragile designs that can break in
unexpected ways for any change requirements.

2.2 O-The Open Close Principle
"Software Entities like classes, modules and functions should
be open for extension, but closed for modification [2]." When a
single change to a program results in a cascade of changes to
dependent modules, that program exhibits the undesirable
attributes that we have come to associate with “bad” design.
The program becomes fragile, rigid, unpredictable and unre-
usable. The openclosed principle attacks this in a very
straightforward way. It says that you should design modules
that never change. When requirements change, you extend the
behavior of such modules by adding new code, not by chang-
ing old code that already works.

2.3 L-The Liskov Substitution Principle
"Derived type must fully support the substitution of their base
types. [2]" Functions that use pointers or references to base
classes must be able to use objects of the derived without
knowing it. This is related to the substitution property. [3] The
importance of this principle becomes obvious when you con-
sider the consequences of violating it. If there is a function
which does not conform to the LSP, then that function using a
pointer or reference to a base class must know about all the
derivatives of that base class.

2.4 I-The Interface Segregation Principle
"Clients Should Not Be Forced to Depend Upon Interfaces

S

————————————————
• Harmeet Singh, Department of Computer Science, Jamia Hamdard, New

Delhi, India, singh.meet@gmail.com
• Syed Imtiyaz Hassan, Department of Computer Science, Jamia Hamdard,

New Delhi, India, s.imtiyaz@gmai.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 1322
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

That They Do Not Use [2]." A change in an unrelated Interface
can result into an inadvertent change in the client code. This
results in an inadvertent coupling between all the clients. ISP
suggests that clients should not know about them as a single
class. Instead, clients should know about abstract base classes
that have cohesive interfaces.

2.5 D-The Dependency Inversion Principle
"High Level Modules should not depend upon Low Level
Modules.Both should depend upon Abstractions. Abstractions
should not depend upon Details. However, details should
depend upon abstractions [2]." We should decouple high level
modules from low level modules, introducing an abstraction
layer between the high level classes and low level classes. To
conform to the principle of dependency inversion, we must
isolate this abstraction from the details of the problem.

3 CASE A: DESIGN WITHOUT SOLID PRINCIPLES
The first design implementation is random and does not
include the SOLID principles. The SalaryCalculator class
[Fig.1] is responsible to calculate the salary for different em-
ployees in the system. And the contract for this class is de-
fined in ICalculate interface [Fig.1]. There is a separate class
TaxCalculator[Fig.1] to calculate the tax on salary, interface
for this class is same as ICalculate. The API calculat-
eTax(double salary)[Fig.1] is called by each Employee class.
For e.g. every instance of the Professor class is using an in-
stance of TaxCalculator to calculate the tax on its salary

4 PROBLEM IN THE DESIGN
The problems in the design occur if the requirements are
changed. Suppose we change the requirement as follows-

• There should be 1% tax for those employees whose
salary is more than 50000 or,

• We need to add one more Employee "LabAssistant"
who will get 35000 per month.

 This will require changes in code –
• Add one more class for the LabAssistant employee.
• Add another method in ICalculate interface and

SalaryCalculator class.
• Add logic to check whether the salary is more than

50000 in TaxCalculator.

5 VIOLATION OF SOLID PRINCIPLES
Implementing changes in the code to accommodate the new
requirements indicates that there could be possibility of bad
design.
5.1 Violation of SRP

• SalaryCalculator class should not be concerned about
the type of employee. Instead, it should be responsi-
ble for calculating the salary only rather than working
with the employee details.

• Employees should not be responsible to calculate
their tax on the salary.

5.2 Violation of OCP

• Both the class and the interface code for SalaryCalcu-
lator need to be changed while adding a new Em-
ployee in the system.

5.3 Violation of LSP
• Since the base class SalaryCalculator is tightly cou-

pled with the employee types, we cannot use this log-
ic for any other type of employees. Such base class
behaviour does not make any sense for the derived
class and thus we cannot use derived class object to a
base class reference in the current system.

5.4 Violation of ISP

• The ICalculate interface contains the different contrac-
tual API in a single interface. Instead, the calculation
of salary and tax should be segregated in different
contracts.

5.5 Violation of DIP
• The Employee classes are tightly coupled with Tax-

Calculator dependency since all Employee classes are
creating a new instance of TaxCalculator class. This
any property change in TaxCalculator class requires a
change in all classes where the dependency has been
tightly coupled.

6 CASE B: DESIGN WITH SOLID PRINCIPLES
The second approach has been designed by inducing SOLID
design principles resulting in the addition of few interfaces
and classes. In the new design there is an IEmployee interface,
which defines the contract for any type of employee in the
system. And each employee is now responsible to provide its

 Figure 1: Design without SOLID Principles

 Figure 2: Design with SOLID Principle

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 1323
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

present salary to SalaryCalculator. The SalaryCalculator can
now calculate the salary by applying the appropriate rules.
There are different interfaces now defining the contracts for
salaryCalculator and TaxCalculator. The TaxCalculator can be
used by SalaryCalculator only to calculate the salary after tax.

7 REFLECTION OF SOLID PRINCIPLES
With the use of design principles, there would be minimal
impact on the product to accommodate the new requirements
in the system.

7.1 Reflection of SRP

• Every class in the system has its separate responsibili-
ties. SalaryCalculator class is only responsible for sal-
ary calculation without being concerned about the
type of employee.

7.2 Reflection of OCP

• The addition of a new employee does not require any
changes in SalaryCalculator class except for the addi-
tion of a new class of IEmployee type.

7.3 Reflection of LSP

• If we want to use the same SalaryCalculator logic for
any other type of employees (other than the Head of
Department, Professor or Assistant Professor), then
the current base class can be used as a pointer to the
derived classes as it is not dependent on the type of
Employee. Employee should only be of IEmployee in-
terface type.

7.4 Reflection of ISP
• The interfaces have been segregated as per the re-

sponsibilities. The ICalculateSalary interface has been
defined for SalaryCalculator and ITaxCalculator inter-
face has been defined for TaxCalculator, giving a clear
meaning to the contracts.

7.5 Reflection of DIP
• The classes dealing with Employees do not need to

worry about the calculation of tax. The SalaryCalcula-
tor removes this dependency and uses a single in-
stance of taxCalculator.

8 CKJM METRICS ANALYSIS FOR BOTH CASES
CKJM [4] is an open source command line tool that calculates
CK metrics [5] for Java programs. The CKJM tool calculates
object-oriented metrics [6] by processing the byte code of
compiled Java files. The following six metrics proposed by
Chidamber and Kemerer are calculated for each Java class. [7]

8.1 WMC - Weighted Methods per Class

• The WMC metric is simply the sum of the complexi-
ties of its methods. As a measure of complexity we
can use the cyclomatic complexity, or we can abritrar-
ily assign a complexity value of 1 to each method. By

default, CKJM assigns a complexity value of 1 to each
method, and therefore the value of the WMC is equal
to the number of methods in the class.

8.2 DIT - Depth of Inheritance Tree

• The DIT metric provides a measure of the inheritance
levels for each class. In Java the minimum value of
DIT is 1 since all the classes inherit the default ‘Object’
class.

8.3 NOC - Number of Children

• The NOC metric simply measures the number of im-
mediate descendants of the class.

8.4 CBO - Coupling Between Object Classes

• The CBO metric represents the number of classes
coupled to a given class. This coupling can occur
through method calls, field accesses, inheritance, ar-
guments, return types, and exceptions.

8.5 RFC - Response for A Class

• The RFC metric measures the number of different
methods that can be executed when an object of that
class receives a message. CKJM gives a rough approx-
imation about the response set by simply inspecting
method calls within a class.

8.6 LCOM - Lack of Cohesion In Methods

• The LCOM metric counts the sets of methods in a
class that are not related by the sharing of class's
method(s). The original definition of this metric (the
one used in CKJM) considers all the method pairs of a
class. The lack of cohesion in methods is then calcu-
lated by subtracting the number of method pairs that
share a field access from the number of method pairs
that don’t. share a field access the number of method
pairs that do.

8.7 NPM - Number of Public Methods

• The NPM metric simply counts the methods in a class
that are declared as public. It can be used to measure
the size of an API provided by a package.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 1324
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

9 RESULT AND DISCUSSION
These principles are introduced to make an immortal software
[8] design and validation metrics tools [9]. Different tools are
used in separate applications to measure these metrics. CKJM
metrics are used to assess the results for both the type of im-
plementations. An analysis of the calculated metrics has been
used to construct the software design prediction models,
where we could have different combinations of design princi-
ples. Each time, a model constructed according to the data
from project version i has been assessed by predicting the de-
sign in project version i+1. The analysis shows that the imple-
mentation of design principles in an application can reduce
the dependency factor and can help in developing a scalable
architecture. For this sample application, the quality has been
improved by reducing the coupling and introducing the cohe-
sion measure. The collected metrics and SOLID combination

can be used in further research areas, where we would like to
identify the factors and investigate whether they have statisti-
cally significant influence on all types of applications. The re-
sults of the important reproducible empirical research studies
have been specified as follows.

10 CONCLUSION
As the demand for software has diversified during the last few
years leading to a rapid development of the software applica-
tion [10], the focus has now shifted on the scalability of the
Software design. It is important that while working with the
latest development methodologies, the software should scale
itself as per the market competency. Design should be based
on Principles so that it would be easy to reuse and scale the
services [1].
In this research work, a comparative study on the SOLID De-

sign Principles has been done demonstrating their use in
avoiding an immoral design. It can be stated that the applica-
tion of these SOLID design Principles together could lead us to
create a highly maintainable and scalable system. The research
demonstrates the empirical assessment of a Software applica-
tion against the Design approach, and evaluates the quality of
software using CKJM matrices. For our sample application we
have reduced the coupling by 69% (appox.) and introduce the
cohesion by 29% (approx.). Thus the case study approves and
encourages the use of Design principles.

11 FUTURE WORK
This type of study motivates the users to enhance the imple-
mentation of the Design Principles in Software design by find-
ing out the useful and vital combination of these Principles.
This approach should be used to define and use different
combinations of these principles in various types of applica-
tions including Desktop, Web and mobile applications.
This assessment study can be elaborated in a tool so that a
software developer can analyze the impact of various combi-
nations of design principles and choose the required and fea-
sible approach for its application.
Apart from finding the different combinations, the reusability
and quality of the software can be increased, by predicting the
Software design model.

REFERENCES
[1] R. Subramanyam and M. Krishnan, “Empirical analysis of ck metrics

for object-oriented design complexity: Implications for software de-
fects,” IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, April
2003.

[2] R. C. Martin, Design Principles and Design Patterns, 2000. [Online].
Available: http://www.objectmentor.com

[3] [Online]. Available: http://www.oodesign.com/design-
principles.html

[4] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object ori-
ented design,” IEEE TRANSACTIONS ON SOFTWARE ENGINEER-
ING, vol. 20, pp. 476–493, June 1994.

[5] [Online].Available:
http://www.spinellis.gr/sw/ckjm/doc/indexw.html

[6] R. L. Henrike Barkmann and W. L. owe, “Quantitative evaluation of
software quality metrics in open-source projects.”

[7] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented
design quality assessment,” IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, vol. 28, January 2002.

[8] E. D. G. Neha Goyal, “Reusability calculation of object oriented soft-
ware model by analyzing ck metric,” International Journal of Advanced
Research in Computer Engineering and Technology, vol. 3, pp. 2466–
2470, July 2014.

[9] T. H. A. S. Saddam H. Ahmed and A. A. Sewisy, “A hybrid metrics
suite for evaluating object-oriented design,” International Journal of
Software Engineering, vol. 6, pp. 65–82, January 2013.

[10] R. Vir and P. S. Mann, “A hybrid approach for the prediction of fault
proneness in object oriented design using fuzzy logic,” Journal Aca-
demic Industrial Research, 2013.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Overview of SOLID Design Principles
	2.1 S-The Single Responsibility Principle
	2.2 O-The Open Close Principle
	2.3 L-The Liskov Substitution Principle
	2.4 I-The Interface Segregation Principle
	2.5 D-The Dependency Inversion Principle

	3 Case A: Design Without Solid Principles
	4 Problem In The Design
	5 Violation Of Solid Principles
	5.1 Violation of SRP
	5.2 Violation of OCP
	5.3 Violation of LSP
	5.4 Violation of ISP
	5.5 Violation of DIP

	6 Case B: Design With Solid Principles
	7 Reflection of Solid Principles
	7.1 Reflection of SRP
	7.2 Reflection of OCP
	7.3 Reflection of LSP
	7.4 Reflection of ISP
	7.5 Reflection of DIP

	8 Ckjm Metrics analysis for both cases
	8.1 WMC - Weighted Methods per Class
	8.2 DIT - Depth of Inheritance Tree
	8.3 NOC - Number of Children
	8.4 CBO - Coupling Between Object Classes
	8.5 RFC - Response for A Class
	8.6 LCOM - Lack of Cohesion In Methods
	8.7 NPM - Number of Public Methods

	9 Result And Discussion
	10 Conclusion
	11 Future Work
	References

