Detecting Cardiac Arrhythmia by Extracting ECG Features

Bharati M. Deokar, Yoginath R. Kalshetty

Abstract— Disturbance in the regular rhythmic activity of the heart called arrhythmia. Cardiac arrhythmia is caused by irregular firing patterns from SA node, abnormal activity from other parts of the heart. These types of abnormalities of heart may cause damage of heart. Electrocardiogram (ECG) feature extraction system is based on wavelet transform. ECG feature extraction plays a vital role in detecting most of the heart diseases. In an ECG signal one cardiac cycle is made up of P-QRS-T waves. In this feature extraction scheme we determines the amplitudes & intervals of the P-QRS-T segment for determine functioning of the heart. ECG signal is de-noised by removing the coefficients at higher scales. Then, QRS complexes are found & each complex is used to place the peaks of the individual waves, R-R intervals are there in one cardiac cycle and estimate the algorithm Pan-Tompkins algorithm.

Index Terms— Cardiac Arrhythmia, Electrocardiogram (ECG), Feature Extraction, Pan-Tompkins algorithm.

1 INTRODUCTION

Pan-Tompkins is based on QRS complex detection. And it analyzes the slope, amplitude and width. The different steps of the algorithm are shown in fig 1. The low pass & high pass filters forms a band pass filter, which reduces noise in the signal or ECG signal. Noise is like muscle noise.

For Distinguishing QRS complexes from low -frequency ECG components such as the P & T waves the signal is passed through a differentiator for highlighting the high slopes. The third step is squaring operation, which is to lay stress on the higher values that are mainly because of QRS complexes. Then squared signal is passes through a Moving-Window Integrator of length of the window N=30 samples. The result is smooth peak ECG cycle. The output of the Moving-Window Integrator may be used to find QRS complexes, measure R-R intervals, & determine the QRS complex duration in Fig 2.

2 LITERATURE SURVEY

2.1 Review Stage
Before Wavelet Analysis for analyzing ECG signal there are two methods Linear Prediction & Morphological and Time-frequency Features of T-wave.

2.1.1 Linear Prediction:
The number of different important properties indicating that ECG signals has an important attribute in the remaining error signal obtained from Durbin’s linear prediction algorithm. A nonlinear transformation is used for each ECG’s QRS complex, for the feature recognition. It transforms every residual error signal to a set of three states. The pulse-code train has the benefit of easy implementation in digital circuits to get computerized ECG diagnosis. The algorithm is useful in feature extraction. By using this method, our studies specify that the PVC (premature ventricular contraction) detection has at least 92% sensitivity [10].

2.1.2 Morphological and Time-frequency Features of T-wave:
The repolarization phase of heart activity is denoted by the T-wave segment in ECG. This T wave contains more information about the proper operation of electrical activities in heart. Long QT syndrome (LQT) and T-wave Alternans (TWA) have undetectable effects on time and amplitude of T-wave interval. Thus, several T-wave features can be used to classify LQT and TWA. Totally, 22 features including 17 morphological and 5 wavelet features have been extracted from T-wave to show the ability of this section to recognize the normal and abnormal records. by pre-processing, T-wave feature extraction and artificial neural network (ANN) we can implement recognition. T-wave is most important in description of LQT syndrome, Normal and TWA of ECG classification [9].
2.2 Final Stage

Fig 3: Stages of ECG signal processing

3 EQUATIONS

Low-pass filter:
25ms at the 200sps rate of sampling (sampling rate) is the filter delay.

High-pass filter:
By subtracting a first-order low-pass filter from an all pass filter, the high pass filter is implemented.

\[H_{lp}(z) = \frac{1-2^{-21}}{1-2^{-1}} \]
[Equation of low pass filter]

5Hz is the low cut off frequency and the gain is one.

Derivative:
The derivative used with transfer function:

\[H(z) = 0.1(-2z^{-2} - z^{-1} + z^{1} + 2z^{2}) \]
(5)

\[Y(nT) = (2X(nT) + X(nT - T) - X(nT - 3T) - 2X(nT - 4T))/8 \]
[With the difference equation]

Squaring function:
The squared point by point signal is.
The equation is –

\[Y(nT) = [X(nT)^2] \]
(6)

\[Y(nT) = (1/N)[X(nT - (N - 1)T) + X(nT - (N - 2)T) + ... + X(nT)] \]
[Moving-WindowIntegration]

Where, in the width of the integration window, N is the number of samples.

4 HELPFUL HINTS

4.1 Result(Figures and Tables)

Fig. 4.

Raw data from MIT-BIH database

Fig. 5.

ECG Signal after LPF
filtered ECG signal

Fig. 6. ECG signal after derivative

Fig. 7. Signal after integration & averaging

Fig. 8. Signal with QRS peak

Fig. 9. Decomposition of ECG signal
Final detection is type of arrhythmia identified & shows that type of arrhythmia.

TABLE 1
Different Types of Arrhythmia

<table>
<thead>
<tr>
<th>Interval Differences</th>
<th>Types of Arrhythmia</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR Interval Longer</td>
<td>Bradycardia</td>
</tr>
<tr>
<td>RR Interval Shorter</td>
<td>Tachycardia</td>
</tr>
<tr>
<td>Long PR interval</td>
<td>First degree heart block</td>
</tr>
<tr>
<td>ST Segment elevated</td>
<td>Myocardial infraction</td>
</tr>
<tr>
<td>ST Segment short(absent)</td>
<td>Hypercalcemia</td>
</tr>
<tr>
<td>Wide QRS</td>
<td>Premature ventricular contraction</td>
</tr>
<tr>
<td>Absence of P wave (IVR)</td>
<td>Atrial fibrillation, Idioventricular rhythm</td>
</tr>
<tr>
<td>Inverted T wave</td>
<td>Coronary ischemia</td>
</tr>
<tr>
<td>Long QT interval</td>
<td>Nocturnal hypoglycaemia</td>
</tr>
<tr>
<td>More P waves than QRS complex</td>
<td>Second & third degree AV block</td>
</tr>
<tr>
<td>Tall or tent shaped T wave</td>
<td>Hyperkalemia</td>
</tr>
</tbody>
</table>

5 CONCLUSION

R Peak and QRS complex values are very useful in ECG analysis. The main benefit of this type of detection is less time consuming. From Pan-Tompkins algorithm it is concluded that no. of QRS waves is less in arrhythmia data compared to normal person.

The coefficients are plotted using DWT (Discrete Wavelet Transformation). So, our result display type of arrhythmia if any abnormal signal is found otherwise it display normal wave or signal.

REFERENCES