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ABSTRACT--- This paper describes the FPGA
implementation of a Decimal Floating Point (DFP)
adder/subtractor using IEEE 754-2008 format. In this
paper we describe an efficient implementation of an IEEE
754 single precision Standard for Binary   Floating-
Point   Arithmetic   to   include   specifications   for
decimal floating-point arithmetic. As processor support
for decimal floating-point arithmetic emerges,  it  is
important  to  investigate  efficient  algorithms  and
hardware designs for common decimal floating-point
arithmetic algorithms. This paper presents novel
designs for a decimal floating-point addition and
subtraction. They are fully synthesizable hardware
descriptions in VERILOG. Each one is presented for
high speed computing.

Keywords- IEEE-754 Floating Point Standard;
Addition and Subtraction Algorithm.

I.INTRODUCTION
Floating point numbers are one possible way of

representing real numbers in binary format; the IEEE 754
[1] standard presents two different floating point formats,
Binary interchange format

and Decimal interchange format. Multiplying floating
point numbers is a critical requirement for DSP applications
involving large dynamic range. This paper focuses only on
single precision normalized binary interchange format. Fig. 1
shows the IEEE 754 single precision binary format
representation; it consists of a one bit sign (S), an eight bit
exponent (E), and a twenty three bit fraction (M or Mantissa).
An extra bit is added to the fraction to form what is called the
significand1. If the exponent is greater than 0 and smaller
than 255, and there is 1 in the MSB of the significand then the
number is said to be a normalized number; in this case the
real number is represented by (1)

The IEEE-754 standard specifies six numerical operations:
addition, subtraction, multiplication, division,  remainder, and
square root.  The standard also specifies rules for converting
to and from the different floating-point formats (e.g
short/integer/ long to /from  single/double/quad-precision),
and conversion between the different floating-point formats.

Figure 1.IEEE floating point format

Z = (-1S) * 2 (E - Bias) * (1.M)


Where M = m22 2-1 + m21 2-2 + m20 2-3+…+ m1 2-22+ m0 2-23;
Bias = 127.

FIG : -1
a) 1-bit sign s.
b) A w + 5 bit combination field G encoding

classification and, if the encoded datum is a finite number,the
exponent q and four significand bits (1 or 3 of which are implied).
The biased exponent E is a w + 2 bit quantity q + bias, where the
value of the first two bits of the biased exponent taken together is
either 0, 1, or 2.
c) A t-bit trailing significand field T that contains

J × 10bits and contains the bulk of the significand. J represents
the number of depletes.

When this field is combined with the leading significand bits
from the combination field, the format encodes a total of p = 3 × J
+ 1 decimal digits. The values of k, p, t, w, and bias for decimal64
interchange formats are 16, 50, 12, and 398 respectively. That
means that number has p=16 decimal digits of precision in the
significand, an unbiased exponent range of [383, 384], and a bias
of 398.

The IEEE-754 standard specifies six numerical operations:
addition, subtraction, multiplication, division,  remainder, and
square root.  The standard also specifies rules for converting to
and from the different floating-point formats
(e.g short/integer/long  to/from  single/double/quad-precision),
and conversion between the different floating-point formats.
, AX and BX are the significands and EAX, EBX and EX are the
exponents respectively. X is a digit that denotes the outputs of
different units. The symbol (N)Z

T refers to Tth bit of the Zth digit
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in a number N, where the least significant bit and the least
significant digit have index 0. For example, (A1)2
5 is the fifth bit of the second BCD digit in A1.

II. DECIMAL FLOATING POINT IN IEEE 754-2008:-
The primary difference between two formats, besides the
radix, is the normalization of the significands (coefficient or
mantissa). BFP significands are normalized with the radix
point to the right of the most significant bit (MSB), while
DFP mantissa are not required to be normalized and are
represented as integers. The mantissa is encoded in densely
packed decimal,
The exponent must be in the range [emin, emax], when
biased by bias. Representations for infinity and not-a number
(NaN) are also provided.

Where s is the sign bit, C is the non-negative integer
Significand and q the exponent. The exponent q is obtained
as a function of biased non-negative integer exponent E.
The mantissa is encoded in densely packed decimal [3], the
exponent must be in the range [emin, emax], when biased by
bias. Representations for infinity and not-a-number (NaN) are
also provided. Representations of floating-point numbers in
the decimal interchange formats are encoded in k bits in the
following three fields (Fig1):

III. DECIMAL FLOATING-POINT
ADDER/SUBTRACTOR IMPLEMENTATION
A general overview of proposed adder/subtractor is
described below. For the best performance, the design
presents eight pipelined stages as is exhibited in the Fig. 2.
Arrows are used to show the direction of data flow, the
dashed blocks indicate the main stages of the design, and the
dotted line indicates the pipeline.

This architecture was proposed for the IEEE 754-2008
decimal64 format and can be extended for the decimal128
format. The adder/subtractor on decimal64 is carried out as
follows: The decoder unit takes the two 64-bit IEEE 754-
2008 operands (OP1, OP2) to generate the sign bits (SA, SB),
16-digit BCD significant (A0, B0), 10-bit biased exponents
(EA, EB), the effective operation (EOP) and flags for specials
values of NaN or infinity. The signal EOP defines the
effective operation (EOP = 0 for effective
addition and EOP = 1 for effective subtraction), this signal is
calculated as:

EOP = SA xor SB xor OP-------- (2)
As soon as possible the decoded significant become
available, the leading zero detection unit (LZD) takes these
results and computes the temporary exponents (EA1, EB1)
and the normalized coefficients (A1, B1). The swapping unit
swaps the operands (A1, B1) if EA1 < EB1 and Generates the
BCD coefficients A2 (with higher exponent,max(EA1, EB1))
and B2 (with lower exponent, min(EA1,EB1)). In parallel
with the above mentioned, this unit generates an exponent
difference (Ed = |EA1 - EB1|), the exponent
E2 = max(EA1, EB1), the SWAP flag if a swapping process

is carried out, and the right shift amount (RSA) which
indicates how many digits B2 should be right shifted in order
to guarantee that both coefficients (A2, B2) have the same

exponent.

The RSA is computed as follows:
if (Ed <= p_max)

RSA = Ed
else RSA = p_max

The value p_max = 18 digits, RSA is limited to this
value since B2 contains 16 digits plus two digits which will be
processed to compute the guard and round digit.

Next, the Shifting unit receives as inputs the RSA, and the
significand B2 generating a shifted B2 (B3) and a 2-bit signal
called predicted sticky-bit (PSB) that will predict two initials
sticky bits. PSB and B3 will be utilized as inputs in the decimal
addition, control signals generation and post-correction units,
respectively.
The outputs above mentioned plus two signals,
significand A2 and EOP, are taken as inputs in the control signals
generation unit and generates the signals necessary to perform an
addition or subtraction operation, these signals are described in
the Sub-section 3.4 and are made up of a prior guard digit (RD2),
the final partial sum (S2) and the corrected exponent (E3).
digit (GD1), a prior round digit (RD1), an extra digit (ED), a
signal which verifies if A2 > B3(AGTB) and a carry into (CIN).

The significant BCD (A2, B3) and the CIN are inputs the
decimal addition unit generating the partial sum of magnitude |S1|
= |A2 + (-1) EOP B3| and a carry out (COUT), respectively.
At once, the 16-digit decimal addition unit takes the A2, B3, EOP
and CIN and computes S1 as follows:

S1 = A2 + B3 if EOP = 0, S1 = A2 + cmp9 (B3)
if EOP = 1 and A2 >= B3, and

S1 = cmp9 A2+cmp9(B3)) if EOP = 1 and A2 < B3.
The symbol cmp9 means the 9`s complement.

The post-correction unit uses as inputs the PSB, the
Exponent E2, GD1, RD1, ED, the partial sum S1 and
COUT to verify, correct and compute the inputs signals if only
the following two cases occur: 1) COUT=1 and EOP=0 and 2)
(S1)15=0 and (GD1 > 0) and (EOP=1).

The analysis is explained in the Sub-section 3.5.
This unit generates the final sticky bit (FSB), the corrected guard

digit (GD2) and round   Next, the Rounding unit takes the outputs
of the prior unit and rounds S2 to produce the result´s significand
S3 and adjusts the exponent E3 to calculate the final exponent E4.
Simultaneously the overflow, underflow and sign bit signals

The final sign bit is computed as:

FS = (SA ^ ~EOP) V (EOP ^ (AGTB ⨁ SA ⨁ SWAP))



Figure 2: implementaition  diagram
are generated.

IV. PROBLEMS ASSOCIATED WITH FLOATING
POINT ADDITION & SUBTRACTION

For the input the exponent of the number may be
dissimilar. And dissimilar exponent can’t be added directly. So
the first problem is equalizing the exponent. To equalize the
exponent the  smaller number must be increased until it equals to
that of the larger number. Then significant are added. Because of
fixed size of mantissa and exponent of the floating-point number
cause many problems to arise during addition and subtraction.
The second problem associated with overflow of mantissa. It can
be solved by using the rounding of the result. The third problem is
associated with overflow and underflow of the exponent. The
former occurs  when  mantissa  overflow  and  an  adjustment  in
the  exponent  is  attempted  the underflow  can occur while
normalizing a small result. Unlike the case in the fixed-point
addition, an  overflow in the mantissa is not disabling; simply
shifting the mantissa and increasing the exponent can compensate
for such an overflow. Another problem is associated with
normalization of addition and subtraction. The sum or difference
of two significant may be a number, which is not in normalized
form. So it should be normalized before returning results.

V.ADDITION AND SUBTRACRION ALGORITHM

Let a1    and a2    be the two numbers to be added. The
notations ei    and si    are used for the exponent and significant of
the addends ai. This means that the floating-point inputs have
been unpacked and that si  has an explicit leading bit. To add a1
and a2, perform these eight steps:

1. If e1 < e2, swap the operands. This ensures that the
difference of the exponents satisfies

d = e1–e2
e1.

2. If the sign of a1  and a2  differ, replace s2  by its two’s
complement.

3. Place s2  in a p-bit register and shift it d = e1-e2  places
to the right (shifting in 1’s if the s2 was complemented in previous
step). From the bits shifted out, set g to the most- significant bit, r
to the next most-significant bit, and set sticky bit s to the OR of
the rest.

4. Compute a  preliminary  significant  S  =  s1+s2    by
adding  s1    to  the  p-bit  register containing s2. If the signs of a1



and a2  are different, the most-significant bit of S is 1, and
there was no carry out then S is negative. Replace S with its
two’s complement. This can only happen when d = 0.

5. Shift S as follows. If the signs of a1  and a2  are
same and there was a carry out in step 4, shift S right by one,
filling the high order position with one (the carry out).
Otherwise shift it left until it is normalized. When left
shifting, on the first shift fill in the low order  position with
the g bit. After that, shift in zeros. Adjust the exponent of the
result accordingly.

6. Adjust r and s. If S was shifted right in step 5, set r:
= low order bit of S before

shifting and s: = g or r or s. If there was no shift, set r: = g,
s: = r. If there was a single left shift, don’t change r and s. If
there were two or more left shifts, set r: = 0, s: = 0. (In the last
case, two or more shifts can only happen when a1 and a2
have opposite signs and the same exponent, in which case the
computation s1  + s2  in step 4 will be exact.)

7. Round S using following rounding rules as in Table ;
Rounding
Mode

Sign of result
0

Sign of result <0
- +1 if r  s

++1 if r  s
0
Nearest +1 if r  p0 or r

 s
+1 if r  p0 or r
sIf a table entry is non empty, add 1 to the low order bit of S. If

rounding causes carry out, shift S right and adjust the
exponent. This is the significant of the result.
8.Compute the sign of the result. If a1  and a2  have the same
sign, this is the sign of the result.If a1  and a2  have different
signs, then the sign of the result depends on which of a1, a2 is
negative, whether there was a swap in the step 1 and whether
S was replaced by its two’s complement in step 4. As in table
below

Swap Compleme
nt

Sign (a1) Sign
(a2)

Sign
(result)Y

es
Y
es
N
o
N
o
N
o
N
o




N
o

N
o

Y
e
s

Y
e
s

+
-
+
-
+
-

-
+
-
+
-
+

-
+
+
-
-
+

VI. SPECIAL CONDITIONS
Some special conditions are checked before processing. If

any condition is met then we have no need to calculate the
result by normal procedure. Results are directly calculated.
So all the operations are bypassed when any such condition is
met.

1. If a1 = 0 and a2 = 0 then result will be zero.
2. If a1 = a2 and sign of a1

will be again zero.
3. If a1 = 0 and a2
4. If a2 = 0 and a1
5. If d = |e1 – e2| > 24 then result will be equal to larger

of a1  and a2.

VII.Hardware Approach

The block diagrams of the architecture used for
combinational adder is shown above in

Figure 4, step by step from the lower abstract level to the
higher abstract level.

B Unsigned Adder (for exponent addition)
This unsigned adder is responsible for adding the exponent of

the first input to the exponent of the second input and subtracting
the Bias (127) from the addition result (i.e. A_exponent +
B_exponent - Bias). The result of this stage is called the
intermediate exponent. The add operation is done on
8 bits, and there is no need for a quick result because most of the
calculation time is spent in the significand multiplication process
(multiplying 24 bits by 24 bits); thus we need a moderate
exponent adder and a fast significand multiplier.

An 8-bit ripple carry adder is used to add the two input
exponents. As shown in Fig. 3 a ripple carry adder is a chain of
cascaded full adders and one half adder; each full adder has three
inputs (A, B, Ci) and two outputs (S, Co). The carry out (Co) of
each adder is fed to the next full adder (i.e each carry bit
"ripples" to the next full adder).

Figure 5 : - ripple carry adder
The addition process produces an 8 bit sum (S7 to S0) and a

carry bit (Co,7). These bits are concatenated to form a 9 bit
addition result (S8 to S0) from which the Bias is subtracted. The
Bias is subtracted using an array of ripple borrow subtractors .



A normal subtractor has three inputs (minuend (S),
subtrahend (T),Borrow  out (Bo)). The subtractor

logic can be optimized if one
of its inputs is a constant value which is our case, where
the Bias is constant (127|10 = 001111111|2).

S T Bi Difference(R) Bo

0 1 0 1 1

1 1 0 0 0

0 1 1 0 1

1 1 1 1 1

The above table shows one bit subtractor

VIII.SIMULATION RESULTS

FLOATING POINT ADDER

Input 1 = 01000000010001111010111000010100
(3.120 10)

Input 2 = 00111111100101100110011001100110
(1.175 10)

Required Result =
01000000100010010111000010100011

(4.295 10)
Obtained Result =

01000000100010010111000010100011 (4.295 10)

Input 1 = 01000000100010000000000000000000
(4.25 10)

Input 2 = 01000001010010000111101011100010
(12.53 10)

Required Result =
01000001100001100011110101110000 (16.78 10)

Obtained Result =
01000001100001100011110101110001 (16.78 10)

FLOATING POINT SUBTRACTOR
Input 1 = 01000001100001100011110101110000

(16.78 10)
Input 2 = 01000000100010000000000000000000

(4.25 10)
Required Result =

01000001010010000111101011100010 (12.53 10)
Obtained Result =

01000001010010000111101011100010 (12.53 10)

Input 1 = 01000001100101010110011001100110
(18.675 10)

Input 2 = 01000000100101010111000010100011
(4.670 10)

Required Result =
0100000101100000000101000111101 (14.005 10)

Obtained Result =
0100000101100000000101000111101 (14.005 10)



IX.IMPLEMENTATION AND TESTING
The whole adder (top unit) was tested against the

Xilinx floating point adder core generated by Xilinx
coregen. Xilinx core was customized to have two flags to
indicate overflow and underflow, and to have a
maximum latency of three cycles. Xilinx core
implements the “round to nearest” rounding mode.

A testbench is used to generate the stimulus and
applies it to the implemented floating point adder and to
the Xilinx core then compares the results. The floating
point multiplier code was also checked using
DesignChecker [7]. DesignChecker is a linting tool
which helps in filtering design issues like gated clocks, unused/undriven logic, and combinational loops. The design was synthesized using Precision synthesis tool [8] targeting Xilinx Virtex-5
5VFX200TFF1738 with a timing constraint of 300MHz.
Post synthesis and place and route simulations were made
to ensure the design functionality after synthesis and
place and route. shows the resources and frequency
of the implemented floating point multiplier and Xilinx
core

Technology Clk
(GHz) Cycles Delay

(ns)
Mops/

sec

SW

Itanium2 [18] 1.4 219 156.4 6.4
Xeon5100 [19] 3.0 133 44.3 22.6
Xeon [18] 3.2 249 77.8 12.9
Pentium M [21] 1.5 848 565.3 1.8

H
W

Power6 [22] 5.0 17 3.4 294.1
Z10 [23] 4.4 12 2.7 366.7
BID 65nm [10] 1.3 3-13 10.0 100.0
BID Virtex 5 [9] 0.16 13-18 109.8 9.1
Proposed Virtex5 0.2 8 40 200.0

The area of Xilinx core is less than the
implemented floating point adder because the

latter doesn‟t truncate/round the 48 bits
result of the mantissa multiplier which is reflected in
the amount of function generators and registers used to
perform operations on the extra bits; also the speed of
Xilinx core is affected by the fact that it implements the
round to nearest rounding mode.

X. CONCLUSIONS AND FUTURE
WORK

This paper deals with development of a Floating
Point adder and subtractor for ALU in VHDL and
verilog with the help of ModelSim and synthesized with
Xilinx tools. Simulation results of all the designed
programs have been carried out for various inputs with
the help of ModelSim tool. Both are available in single
cycle and pipeline architectures and fully synthesizable
with performance  comparable  to  other  available  high
speed  implementations.  The  design  is described as
graphical schematics and VHDL code. This dual
representation is very valuable as allows for easy
navigation over all the components of the units, which
allows for a faster understanding  of  their

interrelationships  and  the  different  aspects  of  a
Floating  Point operation.
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