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to Time Series 
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Abstracts 

This research reviews the concept of Bootstrapping, and suggests the bootstrap method that performs best for Time Series Analysis. 
Various types of bootstrap schemes have been developed. This research work compare only three methods: Stationary bootstrap, Block 
bootstrap and Sieve bootstrap methods using Monte Carlo simulation and a real life data from Nigeria stock index data. We consider the 
following models: ARIMA(1,0,0), ARIMA(1,1,0), ARIMA(1,1,1), ARIMA(2,1,1) and ARIMA(1,1,3). Our results are based on 2000 simulations; 
the number of bootstrap replicates is 500. We only report the bootstrap estimates for the Bias and the Mean Square error (MSE). Nigerian 
Stock Index (NSI) Data from 5/1/2006 to 10/9/2015.The Nigerian Stock Index data was fitted and it generated an ARIMA (5,2,1). For the 
specific applications, the simulation results suggested that the sieve bootstrap performed better than both the block and the stationary 
bootstrap methods. The analysis of the real life data (NSI data) results supports our simulation findings. Hence, we draw the final 
conclusion that based on our study; the Sieve bootstrap is generally superior over both the Stationary bootstrap and the Block bootstrap. 

Keywords:  Bootstrap, ARIMA, Simulation, Mean Square error, Bias, Asymptotic, Time series. 
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INTRODUCTION 

he bootstrap is a method for estimating the 
distribution of an estimator or test statistic by 
resampling one’s data or a model estimated from the 

data. The methods that are available for carrying the 
bootstrap and the improvements in accuracy that it 
achieves relative to first-order asymptotic approximations 
depend on whether the data are a random sample from a 
distribution or a time series. If the data are random 
samples, then,the bootstrap can be carried out by sampling 
the data randomly with replacement or by sampling a 
parametric model of the distribution of the data. The 
distribution of a statistic is estimated by its empirical 
distribution under sampling from the data or parametric 
model. (Beran and Ducharme, 1991; Hall,1992;Efron and 
Tibshirani,1993; and Davison and Hinkley, 1997) provided 
detailed discussions of bootstrap methods and their 
properties for data that are sampled randomly from a 
distribution.  
 

 
 
 

The situation becomes more complicated when the data are 
a time series data, because bootstrap sampling must be 
carried out in a way that suitably captures the dependence 
structure of the data generation process (DGP). This is not 
difficult if one has a finite-dimensional parametric model 
(e.g., a finite-order ARMA model) that reduces the DGP to 
independent random sampling. In this case and under 
suitable regularity conditions, the bootstrap has properties 
that are essentially the same as they are when the data are a 
random sample from a distribution. (See, for example: 
Andrews, 1999; Bose, 1990) 

This research work is concerned with the situation 
in which one does not have a finite-dimensional parametric 
model that reduces the DGP to independent random 
sampling. We reviewthe three methods that have been 
proposed for carrying out the bootstrap in this situation 
and discuss the ability of these methods to achieve 
asymptotic transformation. We note that methods for 
carrying out the bootstrap with time-series data are not as 
well understood as methods for data that are sampled 
randomly from a distribution. Moreover, the performance 
of the bootstrap as measured by the order of the asymptotic 
transformations that are available from known methods 
tends to be poorer with time series than with random 
samples. This is an important problem for applied research 
because first-order asymptotic approximations are often 
inaccurate and misleading with time-series data and 
samples of the sizes encountered in applications. We shall 
see that there is a need for further research in the 
application of the bootstrap to time series. 
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STATEMENT OF PROBLEM 
Formally, the bootstrap consists of a methodology for 
estimating standard errors by repeatedly re-sampling with 
replacement from the original finite sample, which is 
believed to be sample of independent and identically 
distributed (i.i.d.) observations from an unknown 
probability distribution. The re-samples obtained (known 
as bootstrap samples) are used to estimate the statistic of 
interest. However, it was notpossible to use this bootstrap 
procedure with Time Series data. The reason lies in the 
assumption of i.i.d. random variables which is violated 
when observations are serially correlated. The original 
bootstrap becomes inconsistent in time series data situation 
because the assumption of i.i.d. random variables is 
violated when observations are serially correlated and in 
some cases when the error becomes conditionally volatile. 
The performance of these bootstrap methods using real life 
data(NSI) in context of time-series merits further research. 
OBJECTIVES OF THE STUDY 
Various bootstrap methods have been developed.In this 
project, 
1. We shall investigate the performance of three (3) 
competing bootstrap methods for time-series analysis. 
2. The performance of the bootstrap methods was 
found using simulation study 
3. We shall apply the bootstrap methods to a real life 
Data. 
 
 
 
 
 
 
METHODOLOGY 

We discuss the methods used in this research 
work. 
Monte Carlo Simulation: Monte Carlo simulations design 
is used to investigate the performance of various bootstrap 
methods used in the present study. The models for the 
design are ARIMA (p,d,q) structured  
Set Seed:We specify the random seed and the number of 
simulations. And set the seed to specify the seed for 
generating the next forecasts. 
ARIMA(p,d,q):ARIMA models are, in theory, the most 
general class of models for forecasting a time series which 
can be stationarized by transformations such as 
differencing and logging. In fact, the easiest way to think of 
ARIMA models is as fine-tuned versions of random-walk 
and random-trend models: the fine-tuning consists of 
adding lags of the differenced series and/or lags of the 
forecast errors to the prediction equation, as needed to 
remove any last traces of autocorrelation from the forecast 
errors.  

The acronym ARIMA stands for "Auto-Regressive 
Integrated Moving Average." Lags of the differenced series 
appearing in the forecasting equation are called "auto-
regressive" terms, lags of the forecast errors are called 
"moving average" terms, and a time series which needs to 
be differenced to be made stationary is said to be an 
"integrated" version of a stationary series. Random-walk 
and random-trend models, autoregressive models, and 
exponential smoothing models (i.e., exponential weighted 
moving averages) are all special cases of ARIMA models. 

A non-seasonal ARIMA model is classified as an 
"ARIMA(p,d,q)" model, where:  

• p is the number of autoregressive terms,  
• d is the number of non-seasonal differences, and  
• qis the number of lagged forecast errors in the 

prediction equation.  
To identify the appropriate ARIMA model for a time 

series, you begin by identifying the order(s) of differencing 
needing to stationarize the series and remove the gross 
features of seasonality, perhaps in conjunction with a 
variance-stabilizing transformation such as logging or 
deflating. If you stop at this point and predict that the 
differenced series is constant, you have merely fitted a 
random walk or random trend model. (Recall that the 
random walk model predicts the first difference of the 
series to be constant, the seasonal random walk model 
predicts the seasonal difference to be constant, and the 
seasonal random trend model predicts the first difference of 
the seasonal difference to be constant--usually zero.) 
However, the best random walk or random trend model 
may still have auto-correlated errors, suggesting that 
additional factors of some kind are needed in the prediction 
equation. 
The ARIMA models used in this project are: 
I. ARIMA (1,0,0) 
An ARIMA (1,0,0) model with constant would have the 
prediction equation:  

𝑌𝑌�(𝑡𝑡) = 𝜇𝜇 + 𝜙𝜙(𝑌𝑌(𝑡𝑡 − 1) − 𝑌𝑌(𝑡𝑡 − 2)) 
II. ARIMA(1,1,0) = differenced first-order 
autoregressive model:  
This would yield the following prediction equation:  

𝑌𝑌�(𝑡𝑡) − 𝑌𝑌(𝑡𝑡 − 1) = 𝜇𝜇 + 𝜙𝜙(𝑌𝑌(𝑡𝑡 − 1) − 𝑌𝑌(𝑡𝑡 − 2)) 
which can be rearranged to  

𝑌𝑌�(𝑡𝑡) = 𝜇𝜇 + 𝑌𝑌(𝑡𝑡 − 1) + 𝜙𝜙(𝑌𝑌(𝑡𝑡 − 1) − 𝑌𝑌(𝑡𝑡 − 2)) 
This is a first-order autoregressive, or "AR(1)", model with 
one order of nonseasonal differencing and a constant term--
i.e., an "ARIMA(1,1,0) model with constant." Here, the 
constant term is denoted by "mu (𝜇𝜇)" and the 
autoregressive coefficient is denoted by "phi (𝜙𝜙)", in 
keeping with the terminology for ARIMA models 
popularized by Box and Jenkins. 
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III. A "mixed" model—ARIMA(1,1,1): 
An ARIMA(1,1,1) model with constant would have the 
prediction equation:  
𝑌𝑌�(𝑡𝑡) = 𝜇𝜇 + 𝑌𝑌(𝑡𝑡 − 1) + 𝜙𝜙�𝑌𝑌(𝑡𝑡 − 1) − 𝑌𝑌(𝑡𝑡 − 2)� − 𝜃𝜃𝜃𝜃(𝑡𝑡 − 1) 

 
 
 
 
IV. ARIMA (2,1,1): 
An ARIMA (2,1,1) model with constant would have the 
prediction equation:  

𝑌𝑌�(𝑡𝑡) = 𝜇𝜇 + 𝑌𝑌(𝑡𝑡 − 1) + 𝜙𝜙1�𝑌𝑌(𝑡𝑡 − 1) − 𝑌𝑌(𝑡𝑡 − 2)�
+ 𝜙𝜙2(𝑌𝑌(𝑡𝑡 − 1) − 𝑌𝑌(𝑡𝑡 − 2) − 𝑌𝑌(𝑡𝑡 − 3))
− 𝜃𝜃𝜃𝜃(𝑡𝑡 − 1) 

 
v. ARIMA (1,1,3): 
An ARIMA (1,1,3) model with constant would have the 
prediction equation:  
𝑌𝑌�(𝑡𝑡) = 𝜇𝜇 + 𝑌𝑌(𝑡𝑡 − 1) + 𝜙𝜙�𝑌𝑌(𝑡𝑡 − 1) − 𝑌𝑌(𝑡𝑡 − 2)� − 𝜃𝜃1𝑒𝑒(𝑡𝑡 − 1)

− 𝜃𝜃2𝑒𝑒(𝑡𝑡 − 2) − 𝜃𝜃3𝑒𝑒(𝑡𝑡 − 3) 
BOOTSTRAP METHOD PERFORMANCE 
EVALUATION 
To assess the performance of the methods we used the 
following performance techniques. 
1. Bias:Let∅ denote the thing that we are trying 
toestimate. 
Let ∅�denote the result of an estimation based onone data 
set. 

Bias, 𝑏𝑏( ∅�)  =  ∅ –  𝐸𝐸[∅�] = difference between the truevalue 
and the average of all possible estimates. 

2. Mean Square Error:The average squared 
residual (MSE) is a measure of how closely the forecasts 
track the actual data. The statistic is popular because it 
shows up in analysis of variance tables. However, because 
of the squaring, it tends to exaggerate the influence of 
outliers (points that do not follow the regular pattern). 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 

3 Bootstrap method Performance Evaluation 
Table 
The bootstrap performance evaluation table shows the 
bootstrap methods Comparison Report for this study. 
 
 
 
 
 
 
 
RESULTS AND DISCUSSIONS 

In this section, we study and compare the performance 
ofStationary, Block and Sieve Bootstrap methods using 

A. Simulation Data (ARIMA). 

We consider the following models: ARIMA(1,0,0), 
ARIMA(1,1,0), ARIMA(1,1,1), ARIMA(2,1,1) and 
ARIMA(1,1,3).Our results are based on 2000 simulations; 
the number of bootstrap replicates is 500. We only report 
the bootstrap estimates for the Bias and the Mean Square 
error (MSE). 

B. Nigerian Stock Index (NSI) Data from 5/1/2000 to 
10/9/2009. 

The Nigerian Stock Index data was fitted and it generated 
an ARIMA (5,2,1).Our results are based on 2000 
simulations; the number of bootstrap replicates is 500.We 
only report the bootstrap estimates for the Bias and the 
Mean Square error. 

A. RESULTS FROM SIMULATION DATA 
(ARIMA). 

 R Output of ARIMA(1,0,0) 

 

1. BIAS: 

Stationary Bootstrap    
 Block Bootstrap 

 

 

 

Sieve Bootstrap 
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2. MSE: 

Stationary Bootstrap    
  Block Bootstrap 

 

  

 

Sieve Bootstrap 

 

 R Output of ARIMA(1,1,0) 

 

 

 

 

1. BIAS: 

 Stationary Bootstrap    
 Block Bootstrap

 

Sieve Bootstrap 

 

2. MSE: 
 Stationary Bootstrap    
 Block Bootstrap 

 

Sieve Bootstrap 

 

 R Output of ARIMA(1,1,1) 
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1. Bias:  

Stationary Bootstrap    
  Block Bootstrap 

 

Sieve Bootstrap 

 

 

2. MSE 

 Stationary Bootstrap    
 Block Bootstrap 

  

Sieve Bootstrap 

 

R Output of ARIMA (2,1,1) 

 
 

 

 

1. Bias: 

Stationary Bootstrap    
  Block Bootstrap 

 

 Sieve Bootstrap 

 

2. MSE 

Stationary Bootstrap     
 Block Bootstrap 

 

 Sieve Bootstrap 

 

R Output of ARIMA (1,1,3) 
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1. Bias: 

Stationary Bootstrap    
  Block Bootstrap 

 

Sieve Bootstrap 

 

 

2. MSE 

 Stationary Bootstrap    
 Block Bootstrap 

 

 Sieve Bootstrap 

 
 
 
 
 
 
 
 
 

Bootstrap method Performance Evaluation Table 
MET  Arima Arima( Arima Arima Arima

HOD (1,0,0) 1,1,0) (1,1,1) (2,1,1) (1,1,3) 

Simul
ation 
Resul

ts 

Bi
as 

-
0.0010
44584 

0.06991
93 

0.0715
5598 

0.0658
0487 

0.0679
5338 

M
SE 

0.0040
60544 

3.36548
7 

9.6574
99 

9.6574
99 

9.6574
99 

Statio
nary 
Boots
trap 

Bi
as 

5.9807
08e-05 

-
0.00394

2727 

-
0.0065
2402 

-
0.0019
35742 

-
0.0021
88269 

M
SE 

0.0040
53825 

3.31971
4 

9.4471
34 

9.5305
2 

9.4291
47 

Block 
Boots
trap 

Bi
as 

8.5336
45e-07 

-
0.00032
81766 

0.0025
77846 

6.3106
52e-05 

-
0.0042
1015 

M
SE 

0.0040
52018 

3.26524
2 

9.4571
13 

9.3772
95 

9.2835
63 

Sieve 
Boots
trap 

Bi
as 

-
1.4712
37e-05 

-
1.47123
7e-05 

-
2.8988
46e-05 

1.1248
08e-06 

6.0030
37e-05 

M
SE 

0.0040
59374 

0.24476
29 

0.5616
879 

0.5639
79 

0.5681
795 

 
From the above table, we observe that all the three methods 
are good bootstrap procedures for the Arima Time series. 
They perform better than those from the simulation results. 
The most surprising is the Sieve Bootstrap, as it performs 
better than both the Stationary bootstrap and the Block 
bootstrap methods across the two ways simulation design 
in this study. This result suggests that the Sieve bootstrap is 
superior over both the Stationary bootstrap and the Block 
bootstrap. 
B. Results obtained bootstrapping the NSE 
Data from 5/1/2006 to 10/9/2015. 

R Output fromNSE Data 
NSE data: 

 

 

 

 

 

Series: NSE 

1/10/2001 11/6/2008 3/27/2006 6/19/2007 8/4/2005

1000
02

0000
3000

04
0000

5000
06

0000

Date

Stoc
k pric

e NS
E

Forecasts from ARIMA(5,2                    

0 200 400 600 800 1000 1200

1000
02

0000
3000

04
0000

5000
06

0000
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1. Bias: 
Stationary Bootstrap    
 Block Bootstrap 

 

  Sieve Bootstrap 

 

 

 

 

2. MSE: 

Block Bootstrap 

 

  Sieve Bootstrap 

 
 
 
 
 
Bootstrap Method Performance Evaluation Table 

METHOD  Arima(5,2,1) 

NSI Data Bias -0.02949217 
MSE 4.750791 

Stationary 
Bootstrap 

Bias -0.001442936 

MSE 4.31575 
Block 

Bootstrap 
Bias -0.002401189 

MSE 4.504353 
Sieve 

Bootstrap 
Bias -0.000614193 
MSE 0.7466976 

 
From the results tabulated above, we observe that 

the Sieve Bootstrap performed better than both the 
Stationary bootstrap and the Block bootstrap methods. 
Hence,analysis of the Nigerian Stock Index data results 
supports our simulation findings.We draw the final 
conclusion that in the framework of our study, the 
Sievebootstrap is generally superior over both the 
Stationary bootstrap and the Block bootstrap. 

 
 

Conclusions  
Formally, the bootstrap consists of a methodology 

for estimating standard errors by repeatedly re-sampling 
with replacement from the original finite sample, which is 
believed to be sample of independent and identically 
distributed (i.i.d.) observations from an unknown 
probability distribution. The re-samples obtained are used 
to estimate the statistic of interest. However, it was 
notpossible to use this bootstrap with Time Series data. The 
reason lies in the assumption of i.i.d. random variables 
which is violated when observations are serially correlated. 
Few approaches to this problem were considered in this 
project. 
For the specific applications, the simulation results 
suggested that the sieve bootstrap performed better than 
both the block and the stationary bootstrap methods. The 
analysis of the real life data (NSI data) results supports our 
simulation findings. 
 Hence, we draw the final conclusion that in the framework 
of our study, the Sievebootstrap is generally superior over 
both the Stationary bootstrap and the Block bootstrap. 
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