Comparative Analysis of CMOS ADC Topologies and Design of 4-Bit SAR ADC Using Deep-submicron Technology

Kiran P. Kokate¹, Amruta P. Chaudhary²
¹ME. student, G.H. Raisoni College of Engineering & Management, Amravati, (M.S.) India.
²Assistant Professor, PRMIT&R, Badnera, Amravati(M.S.), India
¹kiran.kokate01@gmail.com, ²amrutachaudhary88@gmail.com

Abstract: Analog-to-digital converters (ADCs) are key design blocks in digital systems and are currently used by many application fields to improve digital systems, which achieve superior performances with respect to many parameters. This paper presents the comparative analysis of different types of ADC based on different performance parameters and design of SAR ADC. The application of ADC can be found in data acquisition systems, measurement systems and digital communication systems. This paper provides comparison between different performance parameters for ADCs & analyzing the better results & performance in future, the design of SAR ADC is suitable for low power consumption. In modern era, VLSI design is one of the technique to have high speed, less power consumption, effective use of space, easily available productivity and mobility. With the fast advancement of CMOS technology, more & more signal processing functions are implemented in the digital domain for low cost, low power consumption, higher yield, & higher reconfigurability.

Keywords: Analog to Digital Converter, CMOS, SAR, Low Power Consumption.

1 Introduction

An Analog-to-Digital Converter (ADC), which is used in digital system is a device that converts a continuous physical quantity (usually voltage) to a digital number which is the quantity's amplitude. The conversion involves quantization of the input. Instead of doing a single conversion, an ADC often performs the conversions periodically. The result is a sequence of digital values that have converted a continuous-time and continuous-amplitude analog_signal to a discrete-time and discrete-amplitude digital_signal. ADC performs like a bridge between analog and digital world.

DAC is called reconstruction filter. It also eliminates the frequency above the Nyquist rate.

In this, a brief overview of ADC is provided to be effectively used in communication domain. Basically the objective of this paper is to design the high speed ADC and which consume low power. So, the proposed work is to design such type of ADC i.e. SAR ADC with high speed and low power consumption.

2 Classification of ADC:

ADCs have a wide range of classification. there are different types of ADC. The main converter topologies are: Flash, Pipeline, sigma-Delta, SAR.

2.1 Pipeline ADC:

A Pipeline ADC which contains a cascade of stages, each of which contains a low resolution ADC, DAC and amplifier, S&H. The use of sample and hold circuit is to sample the values and then holds the value at which further operations on the data is done. High-speed and medium-resolution ADCs are the essential elements in a wide variety of commercial applications including high-speed data conversion in communication systems, image signal processing and ultrasound front ends. In such
applications, the reduction of power consumption associated with high-speed sampling and quantization is one key design issue to enhance portability and battery operation of the system.

2.2 Sigma-Delta (Σ - Δ) ADC:

Sigma-Delta converters are also called as oversampling converters or charge balancing ADCs. Σ - Δ ADC sample the input signals at a much higher rate than the maximum input frequency. These converters are classified as ADC topology that provides highest resolution while still achieving high speed on the order of 24 bits at 1.5MHz. Oversampling & Noise shaping are the two key techniques employed in these ADCs. Oversampling helps avoid aliasing, improves resolution and reduces noise. The sigma delta ADC oversamples the desired signal by a large factor & filters the desired signal band.

2.3 Flash ADC:

Flash ADC is highest speed of ADC, also called as parallel ADC. Flash ADC uses one comparator per quantization level (2N-1) and 2N resistors. The reference voltage is divided into 2N values, each of which is fed into comparator. The input voltage is compared with each reference value and results in a thermometer code at the output of the comparators. The value of thermometer code remain all zero for each resistor level if the value of VIN less than the value of resistor string and ones if the value VIN is greater than the value of string.

2.4 SAR ADC:

A successive approximation ADC is a type of analog-to-digital converter that converts a continuous analog waveform into a discrete digital representation via a binary search through all possible quantization levels before finally converging upon a digital output for each conversion. The successive approximation A/D converter consists of three main components an analog comparator, a DAC, and a successive-approximation register (SAR) all of which are connected in a feedback arrangement shown in Fig.5

3 Comparative Analysis

All the specified architectures of ADCs have some specialty in their own. Following tabulated form showing all types of ADCs considered above, having various performance parameters calculated by various authors for different applications:
Table 1: Comparative Parameters of Flash ADC

<table>
<thead>
<tr>
<th>References</th>
<th>Resolution/Band width</th>
<th>Speed</th>
<th>CMOS Technology</th>
<th>Power Consumption/Supply Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref. [1]</td>
<td>5 bit / 1GHz</td>
<td>3.5 Gsps</td>
<td>20μm</td>
<td>227mW / 1.4V</td>
</tr>
<tr>
<td>Ref. [2]</td>
<td>4.5, 6 bit / -</td>
<td>1.02 Gsps</td>
<td>65 nm</td>
<td>6mW / 1.2V</td>
</tr>
<tr>
<td>Ref. [3]</td>
<td>5.6 bit / -</td>
<td>1.056 Gsps</td>
<td>0.18 μm</td>
<td>36mW / 1.8V</td>
</tr>
<tr>
<td>Ref. [4]</td>
<td>5 bit / 800 MHz</td>
<td>1.6 Gsps</td>
<td>0.13μm</td>
<td>180mW / 1.2V</td>
</tr>
<tr>
<td>Ref. [5]</td>
<td>5bit/60 MHz</td>
<td>3.2 Gsps</td>
<td>0.13μm</td>
<td>120 mW/1.2V</td>
</tr>
</tbody>
</table>

Table 2: Comparative Parameters of Pipeline ADC

<table>
<thead>
<tr>
<th>References</th>
<th>Resolution/Band width</th>
<th>Speed</th>
<th>CMOS Technology</th>
<th>Power Consumption/Supply Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref. [6]</td>
<td>12 bit</td>
<td>20 Msps</td>
<td>0.53μm</td>
<td>56.3mW / 3.3V</td>
</tr>
<tr>
<td>Ref. [7]</td>
<td>10 bit</td>
<td>100 Msps</td>
<td>90 nm</td>
<td>- / 1.2V</td>
</tr>
<tr>
<td>Ref. [8]</td>
<td>10 bit</td>
<td>100 Msps</td>
<td>0.13 μm</td>
<td>32.4mW / 1.2V</td>
</tr>
<tr>
<td>Ref. [9]</td>
<td>10 bit</td>
<td>60 Msps</td>
<td>0.18 μm</td>
<td>13mW / 5mV</td>
</tr>
<tr>
<td>Ref. [10]</td>
<td>10 bit</td>
<td>100 Msps</td>
<td>180 nm</td>
<td>52.6 mW / 1.8 V</td>
</tr>
</tbody>
</table>

Table 3: Comparative Parameters of Sigma-Delta ADC

<table>
<thead>
<tr>
<th>References</th>
<th>Resolution/Band width</th>
<th>Speed</th>
<th>CMOS Technology</th>
<th>Power Consumption/Supply Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref. [11]</td>
<td>14 bit / 85 dB</td>
<td>5 Msps</td>
<td>0.25μm</td>
<td>50 mW / 2.5 V</td>
</tr>
<tr>
<td>Ref. [12]</td>
<td>12 - 15 bit / -</td>
<td>1 Gsps</td>
<td>0.18μm</td>
<td>950 mW / 1.8 V</td>
</tr>
<tr>
<td>Ref. [13]</td>
<td>16 bit / -</td>
<td>2.5 MHz</td>
<td>0.5μm</td>
<td>270 mW / 1.2 V</td>
</tr>
<tr>
<td>Ref. [14]</td>
<td>≥15 bit / ≥95 dB</td>
<td>-</td>
<td>0.18μm</td>
<td>9 mW / 1.8 V</td>
</tr>
<tr>
<td>Ref. [15]</td>
<td>16 bit / 97 dB</td>
<td>2.5 Msps</td>
<td>0.65μm</td>
<td>295 mW / 5 V</td>
</tr>
</tbody>
</table>

4 System Architecture

In SAR ADC architecture three important blocks are Sample & Hold Circuit, Comparator and SAR block.

a. Sample & Hold circuit:
Sample and hold circuit (SHC) mainly used in ADC. It samples analog input signal & holds value between clock cycles. Stable input is required in many ADC topologies, which is provided by sample and hold circuit. it reduces ADC-error caused by internal ADC delay variations. Sometimes, it referred as Track and Hold (T/H). Generally, Sample and hold circuit (SHC) contains a switch and a capacitor. In the tracking mode, when the sampling signal is high and the switch is connected, it tracks the analog input signal. Then, it holds the value when the sampling signal turns to low in the hold mode.

b. Comparator:
Comparator is the only analog block of a SAR ADC and performs the actual conversion. It compares the analog sampled input to the analog output of the DAC and generates digital output of ‘0’ or ‘1’ which will be used in the SAR logic.

The basic schematic of comparator is as shown in figure:

Fig. 6: Sample and Hold Circuit
Fig. 7: CMOS layout of Sample and Hold Circuit
Fig. 8: Basic schematic of Comparator
Fig. 9: CMOS layout of Comparator
c. Successive Approximation Register (SAR)

Successive Approximation Register (SAR) control logic determines each bit successively. The SA register contains N bit for an N-bit ADC. There are 3 possibilities for each bit, it can be set to ‘1’, reset to ‘0’ or keeps its value.

In the first step, MSB is set to ‘1’ and other bits are reset to ‘0’, the digital word is converted to the analog value through DAC. The analog signal at the output of the DAC is inserted to the input of the comparator and is compared to the sampled input. Based on the comparator result, the SAR controller defines the MSB value. If the input is higher than the output of the DAC, the MSB remains at ‘1’, otherwise it is reset to ‘0’. The rest of bits are determined in the same manner. In the last cycle, the converted digital word is stored. Therefore, an N-bit SAR ADC takes N+1 clock cycles to perform a conversion. SAR is a combination of counter and combinational logic.

5 Results & Discussion

Here, we have taken all the results of SAR ADC based on performed simulation by using the software Microwind 3.1.
6 Conclusion

This comparative analysis gives ADC topologies with different parameters. From this we have concluded that as the technology reduced, the performance of ADC will be better for every type. A SAR ADC which operates at low supply voltage is designed in a standard 90nm technology. The results indicate that the circuit achieves 4-bit conversion at medium speed with sampling frequency 2.1GHz and power consumption of 2.593 mW. Test results indicate that the circuit is well suited for operation for 1.2V.

REFERENCES:


[21] Sanjay Talekar and S.Ramasamy “A low power 700 MSPS 4-bit Time Interleaved SAR ADC in 0.18um cmos” IEEE transaction 2009.

[22] Zhiheng Cao “ A 32mw 1.25GS/s 6b 2b/step SAR ADCs for UWB applications”